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Preface

In the fall of 1992, the second author gave a course called “Intermediate PDEs”
at the Courant Institute. The purpose of that course was to present some basic
methods for obtaining various a priori estimates for second-order partial differ-
ential equations of elliptic type with particular emphasis on maximal principles,
Harnack inequalities, and their applications. The equations one deals with are al-
ways linear, although they also obviously apply to nonlinear problems. Students
with some knowledge of real variables and Sobolev functions should be able to
follow the course without much difficulty.

In 1992, the lecture notes were taken by the first author. In 1995 at the Univer-
sity of Notre Dame, the first author gave a similar course. The original notes were
then much extended, resulting in their present form.

It is not our intention to give a complete account of the related theory. Our goal
is simply to provide these notes as a bridge between the elementary book of F. John
[9], which also studies equations of other types, and the somewhat advanced book
of D. Gilbarg and N. Trudinger [8], which gives a relatively complete account of
the theory of elliptic equations of second order. We also hope our notes can serve
as a bridge between the recent elementary book of N. Krylov [11] on the classical
theory of elliptic equations developed before and around the 1960s and the book
by Caffarelli and Cabré [4], which studies fully nonlinear elliptic equations, the
theory obtained in the 1980s.

The authors wish to thank Karen Jacobs, Cheryl Huff, Joan Hoerstman, and
Daisy Calderon for the wonderful typing job. The work was also supported by
National Science Foundation Grants DMS No. 9401546 and DMS No. 9501122.

July 1997

In the new edition, we add a final chapter on the existence of solutions. In it
we discuss several methods for proving the existence of solutions of primarily the
Dirichlet problem for various types of elliptic equations. All these existence results
are based on a priori estimates established in previous chapters.

December 2010
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CHAPTER 1

Harmonic Functions

1.1. Guide

In this chapter we will use various methods to study harmonic functions. These
include mean value properties, fundamental solutions, maximum principles, and
energy methods. The four sections in this chapter are relatively independent of
each other.

The materials in this chapter are rather elementary, but they contain several im-
portant ideas on the whole subject, and thus should be covered thoroughly. While
doing Sections 1.2 and 1.3, the classic book by Protter and Weinberger [13] may
be a very good reference. Also, when one reads Section 1.4, some statements con-
cerning the Hopf maximal principle in Section 2.2 can be selected as exercises.
The interior gradient estimates of Section 2.4 follow from the same arguments as
those in the proof of Proposition 1.31 in Section 1.4.

1.2. Mean Value Properties

We begin this section with the definition of mean value properties. We assume
that 2 is a connected domain in R”.

DEFINITION 1.1 Foru € C(2) we define

(1) u satisfies the first mean value property if
1
ux) = ——— / u(y)dSy forany B,(x) C Q;
wWpt™™
9B, (x)
(i1) u satisfies the second mean value property if

n

u(x) = / u(y)dy forany B,(x) C Q

By (x)

wnt

where w, denotes the surface area of the unit sphere in R”.
REMARK 1.2. These two definitions are equivalent. In fact, if we write (i) as
n—1 1
u(x)r = — u(y)dsSy,
Wn

9B, (x)
1



2 1. HARMONIC FUNCTIONS
we may integrate to get (ii). If we write (ii) as

n
uor =2 [ ueay.
Wp
By (x)

we may differentiate to get (i).

REMARK 1.3. We may write the mean value properties in the following equiv-
alent ways:

(i) u satisfies the first mean value property if
1
ulx) = — / u(x + rw)dSy forany B,(x) C Q;
Wp
lw|=1

(i1) u satisfies the second mean value property if

u(x) = i / u(x +rz)dz forany B,(x) C Q.
Wnp
lz|<1

Now we prove the maximum principle for the functions satisfying mean value
properties.

PROPOSITION 1.4 If u € C(Q) satisfies the mean value property in 2, then u
assumes its maximum and minimum only on 02 unless u is constant.

PROOF: We only prove for the maximum. Set
Y={xeQ: ulx)=M =maxu} C Q.
Q

It is obvious that ¥ is relatively closed. Next we show that X is open. For any
Xo € X, take B, (xg) C Q2 for some r > 0. By the mean value property we have

" / u(dy < M—"— / dy = M.
n " Wyt
B, (x0) B, (x0)

This implies ¥ = M in B, (xg). Hence X is both closed and open in 2. Therefore
either ¥ = ¢ or ¥ = Q. ]

M = u(xg) = ”

DEFINITION 1.5 A function u € C?(R) is harmonic if Au = 0 in Q.

THEOREM 1.6 Let u € C%(2) be harmonic in Q. Then u satisfies the mean value
property in 2.

PROOF: Take any ball B,(x) C 2. For p € (0,r), we apply the divergence
theorem in B,(x) and get

0 0
/ Ay = | Las = ! / M (% + pw)dSu
av ap
B,(x) B, lw|=1
(%) 5
=ptl— / u(x + pw)dSy.
dp

lw|=1
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Hence for harmonic function u we have for any p € (0, r)

d
— [ u(x + pw)dSy, = 0.
dp

lw|=1

Integrating from O to r we obtain
u(x +rw)dSy = / u(x)dSy = u(x)wy

lw|=1 lw|=1

or

1 1
u(x) = — / u(x +rw)dSy = ——— / u(y)dSy.
w, Wnr

n
lw|=1 9B, (x)

O

REMARK 1.7. For a function u satisfying the mean value property, u is not
required to be smooth. However a harmonic function is required to be C2. We
prove these two are equivalent.

THEOREM 1.8 Ifu € C(2) has mean value property in 2, then u is smooth and
harmonic in 2.

PROOF: Choose ¢ € C§°(B1(0)) with fBl(o) ¢ = 1and p(x) = ¥ (|x|); i.e.,

1
wn/ Yy (rydr = 1.
0

We define ¢:(z) = ein(p(%) for ¢ > 0. Now for any x € Q consider ¢ < dist
(x, 0R2). Then we have

/ u()ge(y — x)dy = f u(x + )oe(y)dy

Q
_ 1 4
= / M(X+y)<p(8)dy

lyl<e

= / u(x +ey)e(y)dy
lyl<1

1
=/ " dr / u(x + erw)e(rw)dSy
0

0B1(0)

1
=/ v(r)yr"dr / u(x + erw)dSy
0

lw|=1

1
= u(x)a)n/O v(r)r"Vdr = u(x)
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where in the last equality we used the mean value property. Hence we get
u(x) = (pe xu)(x) forany x € Q. ={y € Q; d(y,dQ) > &}.

Therefore u is smooth. Moreover, by formula () in the proof of Theorem 1.2 and
the mean value property we have

/ Au:r"_lai / u(x + rw)dSy
r

B (x) lw|=1
d
= r"_la—(a)nu(x)) =0 forany B,(x) C Q.
r
This implies Ay = 0 in 2. ]

REMARK 1.9. By combining Theorem 1.6 and Theorem 1.8, we conclude that
harmonic functions are smooth and satisfy the mean value property. Hence har-
monic functions satisfy the maximum principle, a consequence of which is the
uniqueness of solution to the following Dirichlet problem in a bounded domain

Au=f inQQ,
u=¢ onoaf2,
for f € C(2) and ¢ € C(d2). In general uniqueness does not hold for an
unbounded domain. Consider the following Dirichlet problem in the unbounded
domain €2
Au=0 1in €,
u=0 ondQ.
First consider the case Q = {x € R”;|x| > 1}. Forn = 2,u(x) = log|x|is a
solution. Note ¥ — oo as r — o0o. For n > 3, u(x) = |x|>™" — 1 is a solution.
Note u — —1 as r — oo. Hence u is bounded. Next, consider the upper half
space Q = {x € R";x, > 0}. Then u(x) = x, is a nontrivial solution, which is
unbounded.
In the following we discuss the gradient estimates.
LEMMA 1.10 Suppose u € C(BR) is harmonic in BR = Bgr(xo). Then there
holds n
| Du(xo)| < — max |ul.
R B,

PROOF: For simplicity we assume u € C!(Bg). Since u is smooth, then
A(Dy,;u) = 0, that is, Dy, u is also harmonic in Bg. Hence Dy, u satisfies the
mean value property. By the divergence theorem we have

n n
Dauto) = o [ Dautndy = L [ utwias,.
BRr(xo) 0B R (x0)
which implies
n
D, u(xp)| < max |u| - w, R"~! < — max |ul.
Do) = e ma - o ' < G
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_ O
LEMMA 1.11 Suppose u € C(BR) is a nonnegative harmonic function in Bg =

BRr(x0). Then there holds
n
| Du(xo)| = Zu(xo).

PROOF: As before by the divergence theorem and the nonnegativeness of u
we have

n
Do)l = =" [ u)ds, = Futx)
9B R (x0)
where in the last equality we used the mean value property. (I

COROLLARY 1.12 A harmonic function in R" bounded from above or below is
constant.

PROOF: Suppose u is a harmonic function in R”. We will prove that u is a
constant if u > 0. In fact, for any x € R” we apply Lemma 1.11 to u in Br(x)
and then let R — co. We conclude that Du(x) = 0 for any x € R”. ]

PROPOSITION 1.13 Suppose u € C(BR) is harmonic in BR = Bgr(xo). Then
there holds for any multi-index o with |o| = m
m, ,m—1,.)

ne !
max |u|.

D%u(xo)| <
| D%u(xo)| < R na

PROOF: We prove by induction. It is true for m = 1 by Lemma 1.10. Assume
it holds for m. Consider m + 1. For 0 < 0 < 1, definer = (1 —60)R € (0, R). We
apply Lemma 1.10 to v in B, and get

n
|D™* 1 (x0)| < = max | D™ul.
r

r

By the induction assumption we have

nm. m—1 | !
max |D"u| < —————— max [u].
B, (R—r) Br
Hence we obtain
n nme™ iy nMmTlem=—1,,)

| D™ lu(xo)| <

max |u|.

m mix|u|: Rm—i—l@m(l_g) Br

r (R—ry" B
Take 0 = ;7. This implies
1 m

— =14+ — m+1) <e(m+1).

gia—g = (1% 5) 4D <em
Hence the result is established for any single derivative. For any multi-index o =
(a1,...,0a,) we have
ol an! < (la])!

THEOREM 1.14 Harmonic function is analytic.
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PROOF: Suppose u is a harmonic function in 2. For fixed x € €2, take
Byr(x) C Q and h € R” with |h| < R. We have by Taylor expansion

mly 9 3\
u(x +h) = u(x) + ; ﬂ[(hlE +~--+hna) u:|(x)+Rm(h)
where
1 9 3 \"
Rnh) = —|(h1— 4+ ha— ) u|(x1 4 0h1,...,xn + Ohy)
m! 0x1 0xy

for some 6 € (0, 1). Note x + h € Br(x) for || < R. Hence by Proposition 1.13
we obtain

1 nMe™m1m! hln%e\™
Ran00] < o™+ < (P22 )
m! R™ B>r R B>gr
Then for any & with |h|n?e < g there holds R, (h) — 0 as m — oo. ]

Next we prove the Harnack inequality.

THEOREM 1.15 Suppose u is harmonic in 2. Then for any compact subset K of Q2
there exists a positive constant C = (2, K) such that ifu > 0 in Q, then

1
5u(y) <u(x) < Cu(y) foranyx,y € K.
PROOF: By mean value property, we can prove if Bag(xo) C €2, then

1
—u(y) <u(x) <cu(y) foranyx,y e Bgr(xo)
C

where c is a positive constant depending only on #. Now for the given compact sub-
set K, take x1,...,xny € K such that { Br(x;)} covers K with 4R < dist(K, 092).
Then we can choose C = ¢V, U

We finish this section by proving a result, originally due to Weyl. Suppose u is
harmonic in 2. Then integrating by parts we have

/uA(p =0 foranyg € COZ(Q).
Q
The converse is also true.

THEOREM 1.16 Suppose u € C(R2) satisfies
(1.1 /uArp =0 foranyg € COZ(Q).

Q
Then u is harmonic in 2.

PROOF: We claim for any B,(x) C 2 there holds

(1.2) r / u(y)dSy =n / u(y)dy.

0B, (x) B (x)
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Then we have

d 1
i (e [ wras:)

0By (x)
nd (1
= ——\— d
wp dr (r” / u(y) y)
B, (x)
n n 1
= o | / u(y)dy + o / u(y)dSy} =0.
Br(x) 0B (x)
This implies
1
PR / u(y)dSy = const.
0B (x)
This constant is u(x) if we let ¥ — 0. Hence we have
1
ux) = ——— / u(y)dSy forany B,(x) C Q.
wnrn—l
0B (x)

Next we prove (1.2) for n > 3. For simplicity we assume that x = 0. Set

(2 =rH", |yl <

7r -
¢y, 1) {0’ > 7.

and then g (v, 7) = ([y12 = r)" * Q2 —k + D|y|? +n(|y[> = r?)) for |y| < r
and k = 2,3,...,n. Direct calculation shows ¢(-,r) € COZ(Q) and

2n@a(y,r), |yl =<r,

A ,r) =
y#(y.1) %O, |y| > r.

By assumption (1.1) we have

/ u()ga(y.r)dy = 0.

B (0)
Now we prove if forsome k = 2,3,...,n—1,
(1.3) [ wwetnay =o
By (0)
then
(1.4) / u(y)ek+1(y,r)dy = 0.
By (0)

In fact, we differentiate (1.3) with respect to » and get

0
[ waond+ [ uo)Enay =o
0B, (0) B, (0)
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For2 <k <n, ¢ (y,r) = 0for|y| = r. Then we have

0
| w ey =o.
r
B, (0)

Direct calculation yields aairk(y, r) = (=2r)(n —k + Dgg+1(y,r). Hence we
have (1.4). Therefore by taking k = n — 1 in (1.4) we conclude

/ (N ((n + DIy P —nr2)dy =o.
B;(0)

Differentiating with respect to r again we get (1.2). ([

1.3. Fundamental Solutions

We begin this section by seeking a harmonic function u, thatis, Au = 0in R”,
which depends only on r = |x — a| for some fixed @ € R". We set v(r) = u(x).
This implies

v// + U, — O
and hence
) c1+calogr, n=2,
v(r) =
ez +car®™, n >3,
where c¢; are constants for i = 1,2,3,4. We are interested in a function with a

singularity such that

0

/—vdSzl for any r > 0.
ar

0B,

Hence we set for any fixed a € R”

1
I'(a,x) = —log|a — x| forn =2
2
1
Ia,x) = ———la—x[*" f > 3.
(a,x) a),,(2—n)|a x| orn >

To summarize, we have that for fixed a € R”, I'(a, x) is harmonic at x # a,
that is,

AxT'(a,x) =0 forany x # a
and has a singularity at x = a. Moreover, it satisfies
ar
/ —(a,x)dSy =1 foranyr > 0.
on x
0By (a)

Now we prove the Green’s identity.
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THEOREM 1.17 Suppose Q is a bounded domain in R"™ and that u € C1(Q) N
C?(R). Then for any a € Q there holds

u(a) =/F(a,x)Au(x)dx—/ (F(a,x)aaTM(x)—u(x);TF(a,x))de.
Q a2 * ¥
REMARK 1.18.

(i) Forany a € €, I'(a, -) is integrable in 2 although it has a singularity.
(ii) For a ¢ 2, the expression in the right side gives 0.
(iii) By letting u = 1 we have [, (.fn—rx(a,x)de = 1foranya € Q.

PROOF: We apply Green’s formula to u and I'(a, -) in the domain Q \ B, (a)
for small r > 0 and get

(F'Au —uAD)dx =

Q\B:(a)
ou or ou or

Q2 3B (a)
Note AI' = 0in 2\ By(a). Then we have
ad ar’ ad ar’
/FAudx=/ F—u—u— dSy — lim / F—u—u— dSy.
on on r—0 on on
Q E19) B, (a)
For n > 3, we get by definition of I'

0 1 i
/ reds| = |———r2" / 2 as
an 2 —n)wy, an
0Br(a) 0Br(a)
< sup |[Du| — 0 asr — 0,
" =2 9B, (a)
ar 1
/ U—dS = —— / udS — u(a) asr — 0.
on wprt—1
0By (a) 0B (a)
We get the same conclusion for n = 2 in the same way. ]

REMARK 1.19. We may employ the local version of the Green’s identity to
get gradient estimates without using the mean value property. Suppose u € C(B1)
is harmonic in B;. For any fixed 0 < r < R < 1 choose a cutoff function
¢ € Cg°(BR) such that ¢ = 1in B, and 0 < ¢ < 1. Apply the Green’s formula
tou and ¢I'(a, ) in By \ By(a) fora € B, and p small enough. We proceed as in
the proof of Theorem 1.17 and obtain

ua) = — / u(x)Ax(p(x)I'(a,x))dx foranya € B,(0).

r<|x|<R
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Hence one may prove (without using the mean value property)

1/p
sup |u| < c(/ |u|p) and sup |Du| < ¢ max |u|
B2 5 B2 B

1

where ¢ is a constant depending only on 7.

Now we begin to discuss the Green’s functions. Suppose €2 is a bounded do-
main in R”. Let u € C1(Q) N C?(R). We have by Theorem 1.17 for any x € Q

ou ar’

ut) = [ Peaumdy = [ (e m -u o )ds,.

ny ony
Q 02

If u solves the Dirichlet boundary value problem

Au=f in€Q,

() U= on 9%,

for some f € C(Q) and ¢ € C(9R), then u can be expressed in terms of f and
@, with one unknown term. We want to eliminate this term by adjusting I".
For any fixed x € €2, consider

y(x,y) =T(x,y) + ®(x,y)

for some ®(x, -) € C%(Q) with Ay®(x,y) = 0in Q. Then Theorem 1.17 can be
expressed as follows for any x € 2

9 9
u(x) =/V(x,y)Au(y)dy—/ (V(x,y)%(y)—u(y)%(x,y))dSy
Q 1Q

since the extra ®(x, -) is harmonic. Now by choosing ® appropriately, we are led
to the important concept of Green’s function.
For each fixed x € © choose ®(x, -) € C1(Q) N C?(R) such that

Ay®P(x,y) =0 for y € Q,
®d(x,y) =—-TI'(x,y) for y € 092.

Denote the resulting y(x, y) by G(x, y), which is called Green’s function. If such
a G exists, then the solution u to the Dirichlet problem () can be expressed as

G
uw) = [ 6 f 0y + [ o015 as,.
y
Q 194

Note that Green’s function G(x, y) is defined as a function of y € Q for each fixed
x € Q.

Now we discuss some properties of G as a function of x and y. Our first
observation is that the Green’s function is unique. This is proved by the maximum
principle since the difference of two Green’s functions are harmonic in 2 with zero
boundary value. In fact, we have more.
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PROPOSITION 1.20 Green’s function G(x,y) is symmetric in Q x Q; that is,
G(x,y) =G(y,x) forx #y e Q.

PROOF: Pick x1,x2 € Q with x; # xp. Choose r > 0 small such that
By (x1) N Br(x2) = @. Set G1(y) = G(x1,y) and Ga(y) = G(x2, y). We apply
Green’s formula in Q \ B, (x1) U B(x3) and get

G G
(G1AGs — G2 AGy) = / (G1—2 - Gz—l)dS

an an
Q\ By (x1)UB/(x2) 0Q2
0G» 0G1
_ Gi—=2 — Gr——
/ ( ! on G2 on )dS
0By (x1)
0G» G
- Gi— — Gy—— .
/ ( on Gz on )dS
0By (x2)

Since Gj; is harmonic for y # x;,i = 1,2, and vanishes on 92, we have

an an on on

0B, (x1) 0B, (x2)
Note the left side has the same limit as the left side in the following as r — 0:

I I
/ rd6z _ Gza— ds + / Gla— RNACR PR
an an on on

0B, (x1) 0B (x2)
Since

/ Faa&dS—)O, / FaziidS—)O asr — 0,
n

n
0B, (x1) 0B (x2)
oI’ oI’
/ Gza— dS—>G2(x1), / Gla_dS —)Gl(X2) asr—>0,
n n
0By (x1) 0By (x2)
we obtain G5 (x1) — G1(x2) = 0 or equivalently G(x2, x1) = G(x1, x2). O

PROPOSITION 1.21 There holds for x,y € Q withx # y
0>G(x,y)>T(x,y) forn >3

1
0>G(x,y)>T(x,y)— Elogdiam(Q) forn = 2.

PROOF: Fix x €  and write G(y) = G(x, y). Since limy_,, G(y) = —o0
then there exists an r > 0 such that G(y) < 0 in B,(x). Note that G is harmonic
in 2\ B,(x) with G = 0on dQ2 and G < 0 on dB;(x). The maximum principle
implies G(y) < 0in  \ B,(x) for such r > 0. Next, consider the other part of
the inequality. Recall the definition of the Green’s function

AP =0 in€2,

G(x,y) = I'(x, D (x, h
(. y) =T(x,y) + ®Cx.y) where y = oo
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For n > 3, we have

1
Mx,y)=———|x —ylz_” <0 foryedQ,
(2 —n)wy

which implies ®(x, -) > 0 on dQ2. By the maximum principle, we have ® > 0 in
Q. For n = 2 we have

1 1
I'(x,y) = —log|x — y| < — logdiam(2) fory € 9LQ2.
2 2
Hence the maximum principle implies ® > —% log diam(€2) in 2. (I
We may calculate the Green’s functions for some special domains.

PROPOSITION 1.22 The Green’s function for the ball Bgr(0) is given by

O 6= (e ypr [ R ELFTY s
i x,y)=—||x— —|—x—-—= orn >3,
Ve men\T T xR
. 1 R [x]
(i) Gx,y)=—|(loglx —y|—log|—x——y forn = 2.
27 |x] R

PROOF: Fix x # 0 with |x| < R. Consider X € R”\ Bg with X the multiple
of x and |X| - |x| = R?, thatis, X = %x. In other words, X and x are reflexive
with respect to the sphere dBg. Note the map x +—— X is conformal; that is, it
preserves angles. If |y| = R, we have by similarity of triangles

Xl _ R [y—x]|

R IX| |y—X|'

which implies

|x]
1'5 — = — — =
(1.5) y—xl=Jly - X]|

Therefore, in order to have zero boundary value, we take for n > 3

G 1 1 R\ 1
)= G e (|x T (M) B —X|"—2)'

The case n = 2 is similar. O

forany y € 0Bg.

Next, we calculate the normal derivative of Green’s function on the sphere.
COROLLARY 1.23 Suppose G is the Green’s function in BR(0). Then there holds
R2 — | x|2

——————— foranyx € Brand y € 0BR.
wn R|x — y|"

G
W(XJ) =

PROOF: We just consider the case n > 3. Recall with X = R?x/|x|?

n—2
6x.) = G (= y P = () - xP)

for x € Br,y € dBR.



1.3. FUNDAMENTAL SOLUTIONS 13

Hence we have for such x and y
Xi — i _(R)"_z Xi —yi ) _ i RP—xP?

1
Dy G(x,y) =— (

on\[x =yl \xl) X =)") 0 R [x =y
by (1.5) in the proof of Proposition 1.22. We obtain with n; = % for [y| = R
G R? — |x|?

n
x,y) = D, G(x,y) = : .
R M T
O

Denote by K(x, y) the function in Corollary 1.23 for x € Q,y € dQ. Itis
called a Poisson kernel and has the following properties:
(i) K(x,y) is smooth for x # y;
(i) K(x,y) > Ofor |x| < R;
(iii) fly\=R K(x,y)dS, = 1forany |x| < R.
The following result gives the existence of harmonic functions in balls with
prescribed Dirichlet boundary value.

THEOREM 1.24 (Poisson Integral Formula) For ¢ € C(dBg(0)), the function u
defined by

u(x) = JoBro) K, »)e(0)dSy, |x| <R,
QD(X), |X| — R,
satisfiesu € C(Q) N C*®(Q) and
Au=0 1inQ,
u=¢ ondQ.

For the proof, see [9, pp. 107-108].
REMARK 1.25. In the Poisson integral formula, by letting x = 0, we have
1
u(0) = o, Ri—1 / p(y)dSy,

dBRr(0)
which is the mean value property.

LEMMA 1.26 (Harnack’s Inequality) Suppose u is harmonic in Br(xo) andu > 0.
Then there holds

R \"?R-r R \"?R+r
< <
(R+r) R—{—ru(xO)_u(x)_(R—r) R0

where r = |x — xo| < R.

PROOF: We may assume xo = 0 and u € C(BR). Note that u is given by the
Poisson integral formula

1 R? — |x|?
- ds,.
ue = = [ S=mruoas,

0B R
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Since R — |x| < |y — x| < R+ |x| for |y| = R, we have

n—2
1 R_m( ! ) /MUM%Su@hs

wnR.R+|x| R+ |x|
0B _
T R+|x| 1 ”2/ (5)dS
. u .
onR R—|x| \R—|x] @Sy

0BRr

The mean value property implies
1
0BR
This finishes the proof. (I

COROLLARY 1.27 If harmonic function u in R" is bounded above or below, then
U = const.

PROOF: We assume u > 0 in R”. Take any point x € R” and apply
Lemma 1.26 to any ball Bg(0) with R > |x|. We obtain

R \"2R—|x| R \" 2R+ |x|
u0) <ux) < u(0),
(R+u0 R+u|(”-()—(R—uJ R— O

which implies u(x) = u(0) by letting R — +o0. U
Next we prove a result concerning the removable singularity.

THEOREM 1.28 Suppose u is harmonic in BR \ {0} and satisfies

as |x| — 0.

u(x) = {o(log|x|), n=2,

o(|x[*™™), n =3,
Then u can be defined at 0 so that it is C? and harmonic in BR.
PROOF: Assume u is continuous in 0 < |x| < R. Let v solve

Av =0 1in Bpg,
vV=u on dBR.

We will prove u = vin Bg\{0}. Setw = v—u in Bg\{0} and M, = maxyp, |w|.
We prove for n > 3. It is obvious that

rn—2
lw(x)| < M, - —— ondB,.
| xln—2
Note w and —i— are harmonic in Bg \ B,. Hence the maximum principle implies

||
n—2

lw(x)| < M, - forany x € Br \ B,

|x|n—2
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where M, = maxyp, |[v —u| < maxpp, |v|+maxyp, |u| < M +maxyp, |u| with
M = maxyp, |u|. Hence we have for each fixed x # 0

n—2 1
n—2
|W(X)|§WM+WF rglgrx|u|—>0 asr — 0,

thatis w = 0 in By \ {0}. O

1.4. Maximum Principles

In this section we will use the maximum principle to derive the interior gradient
estimate and the Harnack inequality.

THEOREM 1.29 Suppose u € C2(By) N C(B1) is a subharmonic function in By;
that is, Au > 0. Then there holds

supu < supu.
Bl 331

PROOF: For ¢ > 0 we consider u.(x) = u(x) + ¢|x|? in B;. Then simple

calculation yields
Aug = Au +2ne > 2ne > 0.

It is easy to see, by a contradiction argument, that u, cannot have an interior max-
imum, in particular,

SUp ue < Sup u.
B 0B}

Therefore we have

supu < supug < supu + e.
B1 Bl 8B1

We finish the proof by letting ¢ — 0. (]
REMARK 1.30. The result still holds if Bj is replaced by any bounded domain.

The next result is the interior gradient estimate for harmonic functions. The
method is due to Bernstein back in 1910.

PROPOSITION 1.31 Suppose u is harmonic in By. Then there holds

sup |Dul| < ¢ sup |u|
B]/z 0B

where ¢ = c(n) is a positive constant. In particular, for any o € [0, 1] there holds

lu(x) —u(y)| <clx —y|* zup lu| foranyx,y € By,
By

where ¢ = c(n, @) is a positive constant.

PROOF: Direct calculation shows that

A(Dul?) =2 )" (Dyw)* +2) DiuDi(Au) =2 Y (Djju)

ij=1 i=1 ij=1
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where we used Au = 0 in B;. Hence |Du|? is a subharmonic function. To get
interior estimates we need a cutoff function. For any ¢ € CO1 (B1) we have

n n
A(p|Dul?) = (Ap)|Dul* +4 ) DipDjuDiju+2¢ Y (Diju)*.
i,j=1 i,j=1

By taking ¢ = n? for some 1 € CO1 (B1) with n = 1in By/,, we obtain by the
Holder inequality

A?*|Dul*) = 2nAn|Dul* + 2| Dy|*| Dul?

n n
+ 87 Z DinDjuDjju + 2772 Z (Dl'ju)2
i,j=1 i,j=1
> (2nAn — 6|Dn|?)|Du|* = —C|Dul?

where C is a positive constant depending only on 7. Note that A(u?) = 2|Du|? +
2uAu = 2|Du|? since u is harmonic. By taking « large enough we get

Am?|Dul? + au?) > 0.
We may apply Theorem 1.29 (the maximum principle) to get the result. (I

Next we derive the Harnack inequality.

LEMMA 1.32 Suppose u is a nonnegative harmonic function in By. Then there
holds

sup |Dlogu| <C
Bi)2

where C = C(n) is a positive constant.

PROOF: We may assume u > 0 in B;. Set v = logu. Then direct calculation
shows

Av = —|Dv|%.
We need the interior gradient estimate on v. Set w = |Dv|?. Then we get
n n
Aw+2) DivDiw =2 Y (Dijv)>.
i=1 i,j=1
As before we need a cutoff function. First note

(1.6) Z(Duv) >Z(Dl,v)2> Lian? = 'D”'4 -

n
9.]_1
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Take a nonnegative function ¢ € CO1 (B1). We obtain by the Holder inequality

n
Alpw) +2) " DivDi(pw)
i=1

n n n
=2¢ Z (D,~jv)2 +4 Z DipDjvDjjv + 2w Z DipD;v + (Ap)w
i,j=1 i,j=1 i=1
- |Dg|?
=9 3 (Dyu? =24l 0of - (Il + c—)|Dv|2
ij=1 ¢
’-]
if ¢ is chosen such that |[D¢|?/¢ is bounded in B;. Choose ¢ = n* for some
n e CO1 (B1). Hence for such fixed n we obtain by (1.1)

n
A(*w) + 22 D;ivD; (n*w)

i=1

n*|Dv|* — Cn?|Dy||Dv|? — 4n*(nAn + C|Dn|?*)|Dv|?

1
>
T n
1

> —n*|Dv|* — Cy’|Dv]* — Cn?|Dv)?

n
where C is a positive constant depending only on n and 1. Hence we get by the

Holder inequality

n
1
A(*w) +2) " DivDi(n*w) = = n*w? - C
i=1 n
where C is a positive constant depending only on n and 7.
Suppose n*w attains its maximum at xo € B;. Then D(n*w) = 0 and
A(n*w) < 0 at xo. Hence there holds

n*w?(xo) < C(n,n).

If w(xp) > 1, then n*w(xp) < C(n). Otherwise n*w(xg) < w(xg) < n*(xo). In
both cases we conclude
n*w < C(n,n) in Bj.
O

COROLLARY 1.33 Suppose u is a nonnegative harmonic function in By. Then
there holds

u(xy) < Cu(xz) foranyxi,x3 € By
where C is a positive constant depending only on n.

PROOF: We may assume u > 0 in B;. For any x1,x2 € By, by simple
integration we obtain with Lemma 1.32

u(x1) !
log < |x1 —x2|/ |[Dlogu(txs + (1 —t)x1)|dt < Clx; — xz|.
0

u(xz) —
O
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Next we prove a quantitative Hopf lemma.

PROPOSITION 1.34 Suppose u € C(B1) is a harmonic function in By = B1(0).
Ifu(x) < u(xg) for any x € By and some xo € 0B1, then there holds

ou
%(XO) > C(u(xo) —u(0))
where C is a positive constant depending only on n.

PROOF: Consider a positive function v in B; defined by

v(x) = e~ _ e,

It is easy to see

Av(x) = e_“|x|2(—20m + 40?|x|?) > 0 for any |x| > %
if @ > 2n + 1. Hence for such fixed « the function v is subharmonic in the region
A = B1 \ By/,. Now define for ¢ > 0

he(x) = u(x) —u(xp) + ev(x).

This is also a subharmonic function, that is, Ak, > 0 in A. Obviously 4, < 0 on
0B and h.(xg) = 0. Since u(x) < u(xg) for |x| = % we may take & > 0 small
such that hg(x) < O for |x| = % Therefore by Theorem 1.29 /i, assumes at the
point x¢ its maximum in A. This implies

0 0
—2(x0) =0 or —u(xo) > —s—v(xo) = 2ace” * > 0.
on an on

Note that so far we have only used the subharmonicity of #. We estimate ¢ as
follows. Set w(x) = u(xg) —u(x) > 0in By. Obviously w is a harmonic function
in B;1. By Corollary 1.33 (the Harnack inequality) there holds

inf w>cm)w(0) or maxu <u(xg)—cm)(u(xg) —u(0)).
B2 B2

Hence we may take
& = dc(n)(u(xo) —u(0))
for § small, depending on n. This finishes the proof. O

To finish this section we prove a global Holder continuity result.

LEMMA 1.35 Suppose u € C(B1) is a harmonic function in By withu = ¢ on
dB1. If ¢ € C%(dBy) for some o € (0,1), then u € C¥2(B}). Moreover; there
holds

lullcarzgyy = Cllelicen)
where C is a positive constant depending only on n and o.

PROOF: First the maximum principle implies that infyg, ¢ < u < supyp, ¢ in
B;1. Next we claim that for any xo € dB; there holds
M) w0 _pap (100 — (o)

(1.7)
XEB, |x - x0|a/2 X€0B; |X - x0|Ol
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Lemma 1.35 follows easily from (1.7). For any x, y € By, set dy = dist(x, dB1)
and dy, = dist(y, 0B1). Suppose dy, < dy. Take xo, yo € dB; such that |x —xo| =
dy and |y — yo| = d,. Assume first that |[x — y| < dx/2. Then y € de/z(x) C
Bg (x) C By. We apply Proposition 1.31 (scaled version) to u — u(xo) in By, (x)
and get by (1.7)

Ju2 1) — 1)

X T x =yl < Clu —u(xo)|Loo(By, (x)) = Cd?? ¢l ca(om,)-

Hence we obtain
u(x) —u(y)| < Clx = y[*?|l¢llce@s,)-
Assume now that dy < dyx < 2|x — y|. Then by (1.7) again we have
[u(x) —u(y)| < |u(x) —u(xo)| + |u(xo) —u(yo)| + |u(yo) —u(y)|
< C(@dY" + [xo = yo|*" + dy/)lpllcocon))
< Clx = y[*?l¢llca@sy)

since [xo — yo| < du + |¥ — y| + dy = 5x —y].

In order to prove (1.7) we assume By = B1((1,0,...,0)), xo = 0,and ¢(0) =
0. Define K = sup,¢yp, l¢(x)|/|x|*. Note |x|?> = 2x; for x € dBj. Therefore
for x € dB; there holds

p(x) < K|x|* < 2“/2Kx‘1¥/2.

Define v(x) = 2"‘/21()c‘1¥/2 in B;. Then we have

Av(x) = 2%/2K . %(% — l)x(l)‘/z_2 <0 in Bj.

Theorem 3.1 implies
u(x) <v(x) = 2"‘/2Kx‘1)‘/2 <2%2K|x|%? forany x € Bj.
Considering —u similarly, we get
lu(x)| <2%2K|x|*/?> forany x € Bj.

This proves (1.7). Il

1.5. Energy Method

In this section we discuss harmonic functions by using the energy method. In
general we assume throughout this section that a;; € C(B1) satisfies

MEP < ayj ()& < AleP forany x € By and & € R”
for some positive constants A and A. We consider the function u € C1(By) satis-
fying
/a,-jD,-uDj(p =0 foranyg € COI(BI).
B,



20 1. HARMONIC FUNCTIONS

It is easy to check by integration by parts that the harmonic functions satisfy the
above equation for a;; = §;;.

LEMMA 1.36 (Cacciopolli’s Inequality) Suppose u € C(By) satisfies
/aijDiungo =0 foranyg € COI(Bl).
B
Then for any function n € CO1 (B1), we have
fnleul2 <C [ |Dn*u?
Bl Bl

where C is a positive constant depending only on A and A.
PROOF: For any 7 € CO1 (B1) set ¢ = n*u. Then we have
» [ 1Duf < A [ atuliDal Dl

By B,

We obtain the result by the Holder inequality. U

COROLLARY 1.37 Let u be as in Lemma 1.36. Then forany 0 <r < R <1 there

holds
/‘|Du|2 < L/uz
T (R-r1)?

B Br
where C is a positive constant depending only on A and A.

PROOF: Take n such that n = 1 on B,, n = 0 outside Bg, and |Dn| <
2(R—r)~L. O

COROLLARY 1.38 Let u be as in Lemma 1.36. Then for any 0 < R < 1 there hold

/ u2§9/u2 and / |Du|2§9/‘|Du|2
Br

Br/2 Bgr,2 Br
where 8 = 0(n, A, A) € (0, 1).

PROOF: Take n € CJ(Bg) with n = 1 on B/, and |Dy| < 2R™'. Then
Lemma 1.36 yields

C
[pomop <c [ =5 [
BR BR

BR\BRr,>2

by noting Dn = 0 in Bg/,. Hence by the Poincaré inequality we get

/ ()2 < c(n)R? / D).
BR BR
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Therefore we obtain

/usz / u?,  which implies (C + 1) / usz/uz.
Bgr/2 BR\BRr/> BRr/2 Br

For the second inequality, observe that Lemma 1.36 holds for u—a for arbitrary
constant a. Then as before we have

fn2|Du|256[|Dn|2(u—a>zs% / (- a)®.

Bg Bg BRr\BR/2

The Poincaré inequality implies witha = |Bg \ Bg /2|_1 f Br\Br/» !

/ (u—a)? <c(n)R? / | Du?.

BRr\BRr,2 BRr\BRr,2
Hence we obtain
[ iour=c [ ipu
Br/> BRr\BRr/,2
in particular,
(C+1) f |Du|2§C/|Du|2.
Br,> Bgr

O

REMARK 1.39. Corollary 1.38 implies, in particular, that a harmonic function
in R” with finite L?-norm is identically 0 and that a harmonic function in R” with
finite Dirichlet integral is constant.

REMARK 1.40. By iterating the result in Corollary 1.38, we have the following
estimates. Let u be in Lemma 1.36. Then for any 0 < p < r < 1 there hold

p\" p\"

[uz fC(—) /u2 and /|Du|2 fC(—) /‘|Du|2
r r

B B B

0 r o r

for some positive constant & = wu(n, A, A). Later on we will prove that we can
take y € (n—2,n) in the second inequality. For harmonic functions we have better
results.

LEMMA 1.41 Suppose {a;;} is a constant positive definite matrix with
MEP < aij&ik) < AEP forany & € R”
for some constants 0 < A < A. Suppose u € C1(By) satisfies

(1.8) /a,'jD,'ungo =0 foranyg € Cy(By).
B
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Then for any 0 < p < r, there hold

p n
(1.9) /lul2 Sc(;) /|u|2,
B, B,
P n+2
(1.10) [l EC(—) R
r
B, B,

where ¢ = c(A, A) is a positive constant and uy denotes the average of u in By.

PROOF: By dilation, consider r = 1. We restrict our consideration to the
range p € (0, %], since (1.9) and (1.10) are trivial for p € (%, 1]. O
CLAIM.

Iulim(Bl/z) + |Du|2oo(31/2) < c(A,A)/ |u|?.
B

Therefore for p € (0, %]
f |u|2 < pn|u|%oo(31/2) = C,On / |M|2
B, By

and

[ =l = [ b= wOP < 92D,y < 0™ [ P
B B B,

o 0

If u is a solution of (1.8), so is u — uy. With u replaced by u — u1 in the above
inequality, there holds

2 2 2
[l < e [,
B, B,
PROOF: We present two methods.

METHOD 1. By rotation, we may assume {a;; } is a diagonal matrix. Hence

(1.8) becomes
n
> AiDiju=0
i=1
with0 < A < A; < Afori = 1,...,n. Itis easy to see there exists an ro =
ro(A, A) € (0, %) such that for any xo € By, the rectangle

%x Ixi — xoi - ro}
N

is contained in B;. Change the coordinate

Xi — y; = and set v(y) = u(x).

Xi
Vi
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Then v is harmonic in {y : > /_; )t,-yl? < 1}. Inthe ball {y : |y — yo| < ro} use
the interior estimates to yield
V0P 1000 ey [ sean [ R
By (o) (U A<y

Transform back to u to get

(o) + | Duxo)2 < c(h. A) / "
[x|<1

METHOD 2. If u is a solution to (1.8), so are any derivatives of u. By applying
Corollary 1.37 to derivatives of u we conclude that for any positive integer k

Il kB, 0y = el A M)l 2(g,)-

If we fix a value of k sufficiently large with respect to n, H kB, /2) is continuously
embedded into C (B, /2) and therefore

[ulLoo(By /) T |DulLoo(B, 0) < (A, A)|ullL2(s,)-
This finishes the proof. (I
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CHAPTER 2

Maximum Principles

2.1. Guide

In this chapter we discuss maximum principles and their applications. Two
kinds of maximum principles are discussed. One is due to Hopf and the other to
Alexandroff. The former gives the estimates of solutions in terms of the L°°-norm
of the nonhomogeneous terms, while the latter gives the estimates in terms of the
L"-norm. Applications include various a priori estimates and the moving plane
method.

Most of the statements in Section 2.2 are rather simple. One probably needs to
go over Theorem 2.11 and Proposition 2.13. Section 2.3 is often the starting point
of the a priori estimates. Section 2.4 can be omitted in the first reading, as we will
look at it again in Section 5.2. The moving plane method explained in Section 2.6
has many recent applications. We choose a very simple example to illustrate such a
method. The result goes back to Gidas-Ni-Nirenberg, but the proof contains some
recent observations in the paper [1]. The classical paper of Gilbarg-Serrin [7] may
be a very good supplement to this chapter. It may also be a good idea to assume
the Harnack inequality of Krylov-Safanov in Section 5.3 and to ask students to
improve some of the results in the paper [7].

2.2. Strong Maximum Principle

Suppose €2 is a bounded and connected domain in R”. Consider the operator
L in €,
Lu = a;j(x)Djju + bi(x)Diju + c(x)u
for u € C2(Q) N C(Q). We always assume that ajj, bi, and c are continuous and
hence bounded in € and that L is uniformly elliptic in  in the following sense:

aij(x)&& > A|€|*> forany x € Q and any £ € R”
for some positive constant A.
LEMMA 2.1 Suppose u € C?(Q) N C(S_Z)_satisﬁes Lu > 0in Q withc(x) <0

in Q. If u has a nonnegative maximum in 2, then u cannot attain this maximum
in Q.

PROOF: Suppose u attains its nonnegative maximum of Q in xo € Q. Then
Dju(xp) = 0 and the matrix B = (D;;(xo)) is seminegative definite. By the
ellipticity condition the matrix A = (a;;(xo)) is positive definite. Hence the matrix
AB is seminegative definite with a nonpositive trace, thatis, a;; (xo) D;ju(x¢) < 0.
This implies Lu(xo) < 0, which is a contradiction. O

25
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REMARK 2.2. If ¢(x) = 0, then the requirement for nonnegativeness can be
removed. This remark also holds for some results in the rest of this section.

THEOREM 2.3 (Weak Maximum Principle) Suppose u € C2(2) N C(Q) satisfies
Lu > 0in Q with c(x) < 0in Q. Then u attains on 02 its nonnegative maximum
in 2.

PROOF: For any ¢ > 0, consider w(x) = u(x) + €e**! with o to be deter-
mined. Then we have

Lw = Lu + ¢ (a110? + byt + ¢).

Since by and ¢ are bounded and a11(x) > A > 0 for any x € 2, by choosing
o > 0 large enough we get

aii(x)a? +by(x)a +c(x) >0 forany x € Q.

This implies Lw > 0 in 2. By Lemma 2.1, w attains its nonnegative maximum
only on 92, that is,

supw < supw™.

Q 1Q
Then we obtain

supu < supw < supw™t < supdQut + & sup e**1.
Q Q Q2 x€dQ

We finish the proof by letting ¢ — O. (]

As an application we have the uniqueness of solution u € C2(22) N C(Q) to
the following Dirichlet boundary value problem for f € C(2) and ¢ € C(9dR2)

Lu=f inQ,
u=¢ onoa,
if c(x) <0in Q.
REMARK 2.4. The boundedness of domain £2 is essential, since it guarantees
the existence of a maximum and a minimum of u in 2. The uniqueness does not

hold if the domain is unbounded. Some examples are given in Remark 1.9. Equally
important is the nonpositiveness of the coefficient c.

EXAMPLE. Set @ = {(x,y) € R : 0 < x < m, 0 < y < m}. Then
u = sinXx sin y is a nontrivial solution for the problem
Au+2u =0 1in £,
u=0 ondQ.
THEOREM 2.5 (Hopf Lemma) Let B be an open ball in R™ with xo € dB. Suppose

u € C2(B) N C(B U {xg}) satisfies Lu > 0 in B with c¢(x) < 0 in B. Assume in
addition that

u(x) < u(xo) foranyx € B andu(xp) > 0.



2.2. STRONG MAXIMUM PRINCIPLE 27
Then for each outward direction v at xo with v - n(xg) > 0 there holds
1
liminf —[u(xg) — u(xg — tv)] > 0.
t—0t ¢
REMARK 2.6. If in additionu € C'(B U {x¢}), then we have

ad
—M(Xo) > 0.
dv

PROOF: We may assume that the center of B is at the origin with radius r. We
assume further that v € C(B) and u(x) < u(xo) for any x € B \ {xo} (since we
can construct a tangent ball By to B at xo and B; C B).

Consider v(x) = u(x) + eh(x) for some nonnegative function 7. We will
choose ¢ > 0 appropriately such that v attains its nonnegative maximum only at
xo. Denote ¥ = B N Bj/2,(x0). Define h(x) = e=oX? _ o=er? \ith ¢ to be
determined. We check in the following that

Lh>0 inX.

Direct calculation yields
n

Lh = e_“x2{4062 Z

n n
aij ()xix; =200y ai(x) =20 Yy bi(x)x; + C} —cemor?
i=1 n=1

Q=1
" n n

> e—alxl %40{2 Z ajj (x)xi)Cj —2u Z[a,‘,‘(x) + b (x)x;] + C}.
Q=1 i=1

By the ellipticity assumption, we have
n 2

Z aij(x)xix; > Alx]? > A(%) >0 inX.
i,j=1
So for « large enough, we conclude Lh > 0 in X. With such &, we have Lv =
Lu+¢eLh > 0in X for any ¢ > 0. By Lemma 2.1, v cannot attain its nonnegative
maximum inside X.

Next we prove that for some small ¢ > 0 v attains at x¢ its nonnegative maxi-
mum. Consider v on the boundary 9X.

e For x € 0¥ N B, since u(x) < u(xg), we have u(x) < u(xg) — 6 for
some § > 0. Take & small such that ¢h < § on dX N B. Hence for such ¢
we have v(x) < u(xp) for x € d¥ N B.
e On X NJB, h(x) = 0 and u(x) < u(xe) for x # xo. Hence v(x) <
u(xp) on X N9IB \ {xo} and v(xg) = u(xp).
Therefore we conclude
v(xg) —v(xg —tv)
t
Hence we obtain by letting t — 0

>0 for any small ¢ > 0.

1 d
liminf —[u(xo) — u(xo — tv)] = —& —(x9).
t—0 v
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By definition of /2, we have
oh
—(X()) < 0.
v
This finishes the proof. (I

THEOREM 2.7 (Strong Maximum Principle) Leru € C%(Q)N C_'($_2) satisfy Lu >
0 with c(x) < 0in Q. Then the nonnegative maximum of u in 2 can be assumed
only on 02 unless u is a constant.

PROOF: Let M be the nonnegative maximum of u in Q. Set ¥ = {x € Q :
u(x) = M}. Itis relatively closed in 2. We need to show ¥ = Q.

We prove by contradiction. If X is a proper subset of €2, then we may find an
openball B C Q\ ¥ with a point on its boundary belonging to X. (In fact, we may
choose a point p € Q \ X such that d(p, ¥) < d(p, dR2) first and then extend the
ball centered at p. It hits ¥ before hitting d€2.) Suppose xo € dB N X. Obviously
we have Lu > 0 in B and

u(x) < u(xp) forany x € B and u(xo) =M >0.

Theorem 2.5 implies g—Z(xo) > (0 where n is the outward normal direction at x¢ to
the ball B. Since xg is the interior maximal point of €2, Du(xg) = 0. This leads
to a contradiction. O

COROLLARY 2.8 (Comparison Principle) Suppose u € C2(2) N C(Q) satisfies
Lu>0inQwithc(x) <0in Q. Ifu <0on 02, thenu < 0 in Q. In fact, either
u<0inQoru=0inS.

In order to discuss the boundary value problem with general boundary con-
dition, we need the following result, which is just a corollary of Theorems 2.5
and 2.7.

COROLLARY 2.9 Suppose 2 has the interior sphere property and thatu € C 2(Q)
N CY(Q) satisfies Lu > 0in Q with c(x) < 0. Assume u attains its nonnegative
maximum at xo € Q. Then xo € 02 and for any outward direction v at xq to 02

d
= (x0) > 0
v
unless u is constant in Q.
APPLICATION. Suppose €2 is bounded in R” and satisfies the interior sphere
property. Consider the the following boundary value problem
Lu=Ff in Q

a—u—i-()t(x)u = on L2

on
for some f € C(Q) and ¢ € C(R). Assume in addition that c¢(x) < 0 in  and
a(x) > 0 on dS2. Then problem (x) has a unique solution u € C%(Q) N C(Q)
ifc %2 0ora % 0. If c = 0. and = 0, problem (*) has a unique solution
u € C2() N C1(Q) up to additive constants.

(%)
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PROOF: Suppose u is a solution to the following homogeneous equation:
Lu=0 1inQ,

8_14 +a(x)u =0 ondS.
on

CASE 1. ¢ # 0 or o # 0. We want to show u = 0.

Suppose that u has a positive maximum at xo € Q. If u = const > 0, this
contradicts the condition ¢ #% 0 in Q or @ # 0 on d2. Otherwise xo € 02 and
S—Z(Xo) > 0 by Corollary 2.9, which contradicts the boundary value. Therefore
u=0.

CASE 2. ¢ = 0and « = 0. We want to show u = const.

Suppose u is a nonconstant solution. Then its maximum in € is assumed only
on d2 by Theorem 2.7, say at xo € d€2. Again Corollary 2.9 implies g—Z(xo) > 0.
This is a contradiction. ]

The following theorem, due to Serrin, generalizes the comparison principle
with no restriction on ¢ (x).

THEOREM 2.10 Suppose u € C2(Q) N C(Q) satisfies Lu > 0. Ifu < 0 in K,
then eitheru < 0in Q oru = 0in Q.

PROOF: We present two methods.

METHOD 1. Suppose u(xg) = 0 for some x¢ € 2. We will prove that u = 0
in €.

Write ¢(x) = ¢ (x) —c¢™(x) where ¢ (x) and ¢~ (x) are the positive part and
negative part of c(x), respectively. Hence u satisfies

aijDjju +b;Diu —c u > —ctu > 0.
So we have u = 0 by Theorem 2.7.

METHOD 2. Set v = ue **! for some @ > 0 to be determined. By Lu > 0,
we have

aij Dijv + [a(a1; + aj1) + bi]1Div + (a11¢? + bro + c)v > 0.
Choose « large enough such that aja? + by + ¢ > 0. Therefore v satisfies
ajjDijv + (a1 + ai1) + bi]Dijv > 0.

Hence we apply Theorem 2.7 to v to conclude that either v < 0in Q orv = 0
in Q. ]

The next result is the general maximum principle for the operator L with no
restriction on ¢ (x).

THEOREM 2.11 Suppose there exists a w € C_Z(Q) N CY(Q) satisfying w > 0
inQand Lw < 0in Q. Ifu € C*(Q) N C(Q) satisfies Lu > 0 in Q, then -
cannot assume in 2 its nonnegative maximum unless % = const. If, in addition,
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% assumes its nonnegative maximum at xo € 02 and % % const, then for any
outward direction v at xq to 0S2 there holds

d (u
5(;)(950) >0

if 02 has the interior sphere property at x.

PROOF: Setv = % Then v satisfies
Lw
aijDjjv+ BiDjv + o v=0

where B; = b; + %ai iDjjw. We may apply Theorem 2.7 and Corollary 2.9
to v. (I

REMARK 2.12. If the operator L in €2 satisfies the condition of Theorem 2.11,
then the comparison principle applies to L. In particular, the Dirichlet boundary
value problem

Lu=f inQ,
u=¢ ona2,
has at most one solution.

The next result is the so-called maximum principle for a narrow domain.

PROPOSITION 2.13 Let d be a positive number and e be a unit vector such that
|(y —x)-e| <d forany x,y € Q. Then there exists a do > 0, depending only on
A and the sup-norm of b; and ¢, such that the assumptions of Theorem 2.11 are
satisfied if d < d.

PROOF: By choosing e = (1,0, ...,0) we suppose  lies in {0 < x; < d}.
Assume in addition |b;|,c™ < N for some positive constant N. We construct w
as follows. Set w = €% — ¢*1 > ( in . By direct calculation we have

Lw = —(aj1a? + bia)e® + c(ead —e*) < —(ay1a? + bia) + Ne%? .
Choose o so large that
aj1a? + bya > Aa®> — Na > 2N.
Hence Lw < —2N +Ne%? = N(e“d —2) < 0if d is small such that e®d <2 O

REMARK 2.14. Some results in this section, including Proposition 2.13, hold
for unbounded domain. Compare Proposition 2.13 with Theorem 2.32.

2.3. A Priori Estimates

In this section we derive a priori estimates for solutions to the Dirichlet prob-
lem and the Neumann problem.
Suppose €2 is a bounded and connected domain in R”. Consider the operator
L in Q
Lu = a;j(x)Diju + b;(x)Diju + c(x)u
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foru € C2(_Q) N C(Q). We assume that ajj, bi, and ¢ are continuous and hence
bounded in €2 and that L is uniformly elliptic in €2, that is,

aij(x)&& > A|€|*> forany x € Q and any £ € R”
where A is a positive number. We denote by A the sup-norm of a;; and b;, that is,

max |a;;j| + max |b;| < A.
Q Q

PROPOSITION 2.15 Suppose u € C%(Q) N C(Q) satisfies
Lu=f inQ,
U= on 02,
for some f € C(Q) and ¢ € C(3Q). If c(x) < 0, then there holds
lu(x)| < nggxlrm + Cmélx | f| forany x € Q

where C is a positive constant depending only on A, A, and diam(£2).
PROOF: We will construct a function w in €2 such that
(1) Lwt+u)=Lw+ f<0 or Lw<%Ff inQ,
(ii) wrtu=wxe=>0 or w > F¢ ondL.
Denote F' = maxg | f| and ® = maxyq |¢|. We need
Lw<-F in€Q,
w>d ondQ.

Suppose the domain 2 lies in the set {0 < x; < d} for some d > 0. Set w =
® + (e*? — ¢**1)F with @ > 0 to be chosen later. Then we have by direct
calculation

—Lw = (a110% + b1a) Fe®™' — c® — ¢(e%? — ¢*¥1)F
> (a110% + bia)F > (@®A + bija)F > F

by choosing « large such that a?A + b1 (x)a > 1 for any x € Q. Hence w satisfies
(i) and (ii). By Corollary 2.8 (the comparison principle) we conclude —w < u < w
in ; in particular,

suplu| < @+ (%4 — 1)F

Q
where « is a positive constant depending only on A and A. ]
PROPOSITION 2.16 Suppose u € C%(Q) N CY(Q) satisfies

Lu=f in Q,

g—z +axX)u=¢ ondQ,

where n is the outward normal direction to 0Q. If c(x) < 0in Q and a(x) > ag >
0 on 0L, then there holds

lu(x)| < C{nggxkol +m51x|f|} for any x € Q
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where C is a positive constant depending only on A, A, oo, and diam($2).
PROOF: We prove for a special case and the general case.
CASE 1. Special case: ¢(x) < —co < 0.
We will show

1 1
lu(x)| < — F+ —® foranyx € Q.
Co (04}

_ 1 1
Define v = EF + %Q + u. Then we have
1 1
Lv=c(x)(—F+—<I>):|:f§—F:|:f§O in Q,
Co (0741}
v 1 1
—Ftaov=a0| —F+—P)|Lep>DdP+¢p=>0 on d0%2.
an co oo

If v has a negative minimum in €, then v attains it on dQ by Theorem 2.5, say, at
Xo € d92. This implies g—:’l(xo) < 0 for n = n(xp), the outward normal direction
at xo. Therefore we get

d
(—v + O‘U)(XO) < av(xg) <0,
on
which is a contradiction. Hence we have v > 0in €, in particular,
1 1
u(x)| < —F + —& forany x € Q.
Co (044}
Note that for this special case ¢ and o are independent of A and A.

CASE 2. General case: c(x) < 0 for any x € Q.

Consider the auxiliary function u(x) = z(x)w(x) where z is a positive func-
tion in €2 to be determined. Direct calculation shows that w satisfies

al’jDijw—l-BiDiw—i-(C-i-alj iz b lz)w=i in 2,
z z
0 10
—w+ a+——Z w="2 on 02,
on z 0n z

where B; = %(aij +aji)Djz 4+ b;. We need to choose the function z > 0 in Q
such that there hold in
a,'jD,'jZ +b;D;z

c+ < —co(A,A,d,ap) <0 in€2,

+ —-—— > -y on d€2,

or
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Suppose the domain € lies in {0 < x; < d}. Choose z(x) = A + ef4 — eP*1 for
x €  for some positive A and B to be determined. Direct calculation shows
(B%ai1 + Bby)eP*
A+ ePd — eBx1
2

o Brann + Bbr 1

T A+ePd T A+ ebd
if B is chosen such that 82a;; + Bby > 1. Then we have
10z
z on

1
—;(a,-jD,-jz +b;iDiz) =

>0

PBopa_ 1

=3¢ =%

if A is chosen large. This reduces to the special case we just discussed. The new
extra first-order term does not change the result. We may apply the special case
tow. ]

REMARK 2.17. The result fails if we just assume «(x) > 0 on d<2. In fact, we
cannot even get the uniqueness.

2.4. Gradient Estimates

The basic idea in the treatment of gradient estimates, due to Bernstein, involves
differentiation of the equation with respect to x;, k = 1, ..., n, followed by mul-
tiplication by Dju and summation over k. The maximum principle is then applied
to the resulting equation in the function v = |Du|?, possibly with some modifi-
cation. There are two kinds of gradient estimates, global gradient estimates and
interior gradient estimates. We will use semilinear equations to illustrate the idea.

Suppose €2 is a bounded and connected domain in R”. Consider the equation

aij(x)Diju + bj(x)Dju = f(x,u) inQ

foru € C2(Q) and f € C(Q x R). We always assume that a;; and b; are
continuous and hence bounded in €2 and that the equation is uniformly elliptic in
Q in the following sense:

aij(X)EE > A|E|*> forany x € Q and any £ € R”
for some positive constant A.
PROPOSITION 2.18 Suppose u € C3(Q) N C1(Q) satisfies
2.1 aij(x)Diju + bi(x)Diu = f(x,u) inQ
fora;j,b; € CY(Q) and f € CH(Q x R). Then there holds
sup |Du| < sup|Du| + C
Q 02

where C is a positive constant depending only on A, diam(S2), |a;;, bi| -1 @) M =
[ulLeo(@), and | [l @x—m.m))
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PROOF: Set L = a;; D;j + b; D;. We calculate L(|Du)?) first. Note
D;(|Du|?) = 2DjuDy;u,
(2.2) D;;(|Du|?) = 2Dy; Dy ju + 2DyuDy;ju.

Differentiating (2.1) with respect to x;, multiplying by Dy u, and summing over k,
we have by (2.2)

aij Dij (|Dul?) + b; Di (| Dul|?)
= 2a;j DxjuDyju —2Dyaj; DruDiju
—2Dyb;i DruDju + 2D, f|Du|? 4+ 2Dy f Dyu.

The ellipticity assumption implies

Z aijDkiuiju > )L|D2u|2.

i,j.k
By the Cauchy inequality, we have

L(|Du|?) > A|D?u|?> — C|Dul*> - C

with C a positive constant depending only on |f|C1(§_Zx[—M M) |la;j, bi |C1(§_2)’
and A.
We need to add another term u2. We have by the ellipticity assumption

L(?) = 2a;; DiuD;ju + 2ufa;; Diju + b; Dju}
> 2A|Du|?® 4 2uf.
Therefore we obtain
L(|Du)? + au?) > A|D?u|?* + 2Aa — C)|Du|* — C
> A|D?u|® + |Dul®> - C

if we choose o > 0 large, with C depending in addition on M. In order to control
the constant term we may consider another function eBx1 for B > 0. Hence we get

L(Dul* + au® + e#*1) > A|D?ul? + | Du|?
+ {B%a1 P + BbreP* — ).

If we put the domain Q C {x; > 0}, then ¥ > 1 for any x € Q. By choosing
B large, we may make the last term positive. Therefore, if we set w = |Dul|? +
alul? 4+ eB*1 for large o, B depending only on A, diam(S2), |aij’bi|Cl(S_2)’ M =
|u|7,00 (@), and |f|C1(§X[_M,M]), then we obtain

Lw >0 in€.
By the maximum principle we have

supw < supw.
Q Q

This finishes the proof. (I
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Similarly, we can discuss the interior gradient bound. In this case, we just
require the bound of supg, |u|.

PROPOSITION 2.19 Suppose u € C3(Q) satisfies
aij(x)Djju + bi(x)Dju = f(x,u) inQ

foraij,bi € C! (Q) and f € CY(QxR). Then there holds for any compact subset
Qe

sup |Du| < C

Q/

where C is a positive constant that depends only on A, diam(2), dist(2’, 92),
laij, bilc1 @y M = lulLeo(@) and | flcv@xi—m.my-

PROOF: We need to take a cutoff function y € Cg°(2) with y > 0 and
consider the auxiliary function with the following form:

w = y|Dul? + ajul* + A1

Set v = y|Du|?. Then we have for operator L defined as before

Lv = (Ly)|Du|® 4+ yL(|Du|*) + 2a;; D;yD;|Du/>.
Recall an inequality in the proof of Proposition 2.18,

L(|Dul?) > A|D*u|®> — C|Du|* - C.
Hence we have
Lv > Ay|D?u|? + 2aij DuD;yDy;u — C|Du)? + (Ly)|Du|* - C.

The Cauchy inequality implies for any ¢ > 0

|2a;; DuD;yDyju| < e|Dy?|D?ul? + c(e)| Du|*.
For the cutoff function y, we require that

|IDy|> <Cy inQ.

Therefore we have by taking ¢ > 0 small
|Dy|?

va/\y|D2u|2(1—8 )—C|Du|2—C

1
> 5Ay|D2u|2 —C|Dul®>-C.
Now we may proceed as before. O

In the rest of this section we use barrier functions to derive the boundary gradi-
ent estimates. We need to assume that the domain €2 satisfies the uniform exterior
sphere property.

PROPOSITION 2.20 Suppose u € C%(Q) N C(Q) satisfies
aij(x)Diju + bi(x)Diu = f(x,u) inQ
foraij,bi € C(Q) and f € C(Q x R). Then there holds

[u(x) —u(xo)| < Clx —xo| foranyx € Q and xo € 02
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where C is a positive constant depending only on A, Q, |aij,bi| o), M =

[ulroo@), |flLoo@x[—m, M), and |<p|C2(§) for some ¢ € C*(Q) with ¢ = u
on 082.

PROOF: For simplicity we assume ¥ = 0 on 0€2. As before, set L = a;; D;j +
b; D;. Then we have

L(zu)=+f>—-F inQ

where we denote F = supgq | f(-,u)|. Now fix xo € 2. We will construct a
function w such that

Lw<-F inQ, w(x) =0, wlyg=>0.
Then by the maximum principle we have
—w<u<w inQ.

Taking the normal derivative at xo, we have

ou Jw
a—n(xo) < %(XO)'

So we need to bound %—'ﬁ(xo) independently of xg.

Consider the exterior ball Bg(y) with Br(y) N Q = {xo}. Define d(x) as the
distance from x to dBg(y). Then we have

0 <d(x) < D =diam(2) forany x € Q.

In fact, d(x) = |x —y|— R for any x € Q. Consider w = v (d) for some function
Y defined in [0, co). Then we need

¥(0)=0 (= w(xo) = 0)
Y(d) >0 ford >0 (= wl|sg =0)
¥’ (0) is controlled.
From the first two inequalities, it is natural to require that ¥’ (d) > 0. Note
Lw = W"aijD,-dDjd + lﬁ,aijDijd + lﬁ,biDid.
Direct calculation yields
Xi — i
lx =yl
Dyjd(x) = §ij  (xi— J’i)(xis— Vi)
|x =yl |x =yl
which imply |Dd| = 1 and with A = sup |a;;|

Did(x) =

’

_ G dij D;dD;d nA B A
lx =yl [x—yl lx =yl |x—yl

nA—)L<nA—)L

x=yI 7 R
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Therefore we obtain by ellipticity

A=
ngwwﬁmdmd+w(”R -+w)

A=A
<w (M 1ol
R
if we require ¥"" < 0. Hence in order to have Lw < —F we need

P 1/f,(nA —A

R

To this end, we study the equation for some positive constants @ and b

lﬂ”—I—al///-{—b:O

+w0+F5a

whose solution is given by

b € C
Y(d) = ——d + — — 2 ¢
a a

a
for some constants C; and C;. For ¢ (0) = 0, we need C; = C». Hence we have
for some constant C

b C
Y(d)=——d+—(1-e,
a a
which implies
1///(01) — Ce—ad _é — e—ad(c _ éead)
a a
v'(d) = —Cae™.

In order to have ¥'(d) > 0, we need C > geaD. Since ¥'(d) > 0 ford > 0, so
¥(d) > ¥ (0) = 0 for any d > 0. Therefore we take

b b
Y(d)=—=d +— P (1 —e79?)
a a

b(1
=—{—e?P(1—ed)_q}.
ala
Such y satisfies all the requirements we imposed. This finishes the proof. U

2.5. Alexandroff Maximum Principle

Suppose 2 is a bounded domain in R” and consider a second-order elliptic
operator L in €2
L =aij(x)D;j + bi(x)D; + c(x)
where coefficients a;;, b;, ¢ are at least continuous in €2. Ellipticity means that
the coefficient matrix A = (a;;) is positive definite everywhere in Q. We set
D = det(A) and D* = D" 5o that D* is the geometric mean of the eigenvalues
of A. Throughout this section we assume

0<A<D*<A
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where A and A are two positive constants, which denote, respectively, the minimal
and maximal eigenvalues of A.
Before stating the main theorem, we first introduce the concept of contact sets.
For u € C?(Q) we define
={yeQ: ulx) <u(y)+ Du(y)-(x —y) for any x € Q}.

The set I'" is called the upper contact set of u, and the Hessian matrix D?u =
(Djju) is nonpositive on I'*". In fact, the upper contact set can also be defined for
continuous function u by the following:

={yeQ:ulx)<u(y)+p-(x—y)forany x € Q
and some p = p(y) € R"}.

Clearly, u is concave if and only if '™ = Q. If u € C1(Q), then p(y) = Du(y),
and any support hyperplane must then be a tangent plane to the graph.
Now we consider the equation of the form

Lu=f inQ
for some f € C(RQ).
THEOREM 2.21 Suppose u € C(Q) N C2(RQ) satisfies Lu > f in Q with the

following conditions:
bl f
D*’ D*

eL™(Q) and ¢ <0 inQ.
Then there holds

supu < suput + CHf—
Q R Ln(T+)

where TV is the upper contact set of u and C is a constant depending only on n,
diam(€2), and || %HL"(I”r)- In fact, C can be written as

2n—2
d - {exp +1]);—1
wpn™ D* L@t

with wy, as the volume of the unit ball in R"™. Here b = (b1, ba, ..., by).

REMARK 2.22. The integral domain I'* can be replaced by
rtn {x € Q:u(x)> supu+}.
Q2

REMARK 2.23. There is no assumption on uniform ellipticity. Compare with
Hopf’s maximum principle in Section 1.

We need a lemma first.

LEMMA 2.24 Suppose g € LIOC(R”) is nonnegative. Then for any u € C(Q) N

C2(Q) there holds
/ g</ g(Du)|det D?u|

B (0)
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where T'V is the upper contact set of u and M = (supg u — supyo u™)/d with
d = diam(Q2).
REMARK 2.25. For any positive definite matrix A = (a;;) we have

(7_%7 Diju)n onTt
n

1
det(—=D%u) < —
et( u)_D

Hence we have another form for Lemma 4.2

/ g =< /g(Du)(%:fﬁﬂl)n-

B ; (0) r+

REMARK 2.26. A special case corresponds to g = 1:

d l/n
supsupu < supu™t + v (/ |detD2u|)
Q 0 w,'"

T+

d aij Diju ™\ /"

<supu® + /n (/(_ UD:{_) ) )
Q2 LN n

Note that this is Theorem 2.21 if b; = 0 and ¢ = 0.

PROOF OF LEMMA 2.24: Without loss of generality we assume # < 0 on 052.
Set QT = {u > 0}. By the area formula for Du in 'T N Q1 C Q, we have

3) [ o= [ sl
Du(ltnNQ+) r+nQ+
where |det(D?u)]| is the Jacobian of the map Du : @ — R”. In fact, we may

consider y, = Du —¢eld : Q — R”. Then Dy, = D?u — eI, which is negative
definite in I't. Hence by the change-of-variable formula we have

e= [ G-
xe(CtNQT) rtnQ+
which implies (2.3) if we let & — 0.
Now we claim B (0) C Du(I'*NQ™), thatis, for any a € R” with |a| < M
there exists x € I'" N Q7T such that a = Du(x).
We may assume u attains its maximum m > 0 at 0 € €2, that is,

u(0) = m = sup Qu.
Consider an affine function for |a| < 7 (= M)
L(x)=m+a-x.

Then L(x) > 0 for any x € Q and L(0) = m. Since u assumes its maximum at 0,
then Du(0) = 0. Hence there exists an x; close to 0 such that u(x;) > L(x1) > 0.
Note that u < 0 < L on 0$2. Hence there exists an X € £ such that Du(X) =
DL(X) = a. Now we may translate vertically the plane y = L(x) to the highest
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such position, that is, the whole surface y = u(x) lies below the plane. Clearly at
such a point, the function u is positive. O

PROOF OF THEOREM 2.21: We should choose g appropriately in order to ap-
ply Lemma 2.24. Note if f = 0 and ¢ = 0 then (—a;; D;ju)" < |b|"|Dul|" in Q.
This suggests that we should take g(p) = |p|™". However, such a function is not
locally integrable (at the origin). Hence we will choose g(p) = (|p|" + n™)~!
and then let © — 0.

First we have by the Cauchy inequality

—a,-jD,-j Sbl‘D,’M—i-Cu—f
<biDiu—f inQ" ={x:u(x)>0}
< [o|-|Dul+ f~

—\n l/n _
< (|b|"+ (];,3 ) Dl + W (1 + 1)

in particular,
f_ n
(ay D = (1017 + (L) )a0ul - 0my 272

Now we choose

1
SO = e
By Lemma 2.24 we have
[ e<Z [ Wmcny
§=—1 .
n" D
B 7 (0) r+net

We evaluate the integral in the left-hand side in the following way:

M n—1 wn Mn + "
g = wn ———dr = —log———
o M4 n M
B;(0)

Therefore we obtain

- 2n—2 b
M" < /L”{eXP {wnn” |:H§

I-
D*

+u "

n
Ji-1t
Ln(T+nQ+)

If f £ 0, we choose u = ||§||Ln(r+mg+). If f % 0, we may choose any u > 0
and then let © — 0. O

n
Ln(T+nQ+)

In what follows we use Theorem 2.21 and Lemma 2.24 to derive some a priori
estimates for solutions to quasi-linear equations and fully nonlinear equations. In
the next result we do not assume uniform ellipticity.
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PROPOSITION 2.27 Suppose that u € C(Q) N C2(Q) satisfies
Qu = a;j(x,u, Du)D;ju + b(x,u,Du) =0 inQ
where ajj € C(Q2 x R x R") satisfies
ajj(x,z, p)&i&; >0 forany (x,z,p) € Q xR xR" and § € R".
Suppose there exist nonnegative functions g € L (R"™) and h € L™ (2) such that

loc
bx.2.p)| _ hx)
nD* = g(p)

[ s < [ & o = g

Q R”

forany (x,z,p) € 2 x R x R",

Then there holds supg |u| < supyq |u|+C diam(S2) where C is a positive constant
depending only on g and h.

EXAMPLE. The prescribed mean curvature equation is given by
(14 |Dul®)Au— DjuDjuD;ju = nH(x)(1 + | Du|?)3/?
for some H € C(£2). We have
aij(x.z.p) = (L + [p)8ij — pipj = D = (1 + [p/)"!
b =—nH()(1+|pl*)*?.
This implies
b(x.z, p)| _ [H)I(A + |p?)*?
nDr T+ P
and in particular

d nt2
goo=fg"<p)dp=/;(1+|p|2) 2 _ o
R” R~

= |H)|(1+ |p[>) 5"

COROLLARY 2.28 Suppose u € C(Q) N C2() satisfies
(14 |Du|®)Au — DiuD;uDiju = nH(x)(1 + |Du?)>? inQ
for some H € C(R2). Then if

Ho = / [HEOI" dx < on,
Q

we have
sup |u| < sup |u| + C diam($2)
Q 0Q

where C is a positive constant depending only on n and Hy.
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PROOF OF PROPOSITION 2.27: We prove for subsolutions. Assume Qu > 0
in 2. Then we have

—aijDiju <b inQ.
Note that {D;;u} is nonpositive in I't. Hence —a;jDijju > 0, which implies
b(x,u,Du) > 0in I'T. Thenin I'" N Q7 there holds
b(x,z, Du) - h(x)
nD* ~ g(Du)’
We may apply Lemma 2.24 to g” and get

—a,-jD,-ju "
n < n D _ g
/ g =< / g"( u)( D )

BM(O) r+nQ+
< [ oewo() s [oms (< [e)
rtnet r-net

Therefore there exists a positive constant C, depending only on g and 4, such that
M < C. This implies

supu < supu™t + C diam(Q).
Q a2

Next we discuss Monge-Ampere equations.
COROLLARY 2.29 Suppose u € C(Q) N C3() satisfies
det(D%u) = f(x,u,Du) inQ

for some f € C(2 x R x R"™). Suppose there exist nonnegative functions g €
10C(R”) and h € LY(Q) such that

| f(x,z,p) <% forany (x,z,p) € Q x R x R”,
[ h(x)dx < [ ¢(P)dp = goo.

R~
Then there holds
sup |u| < sup |u| + C diam(L2)
Q Q

where C is a positive constant depending only on g and h.

The proof is similar to that of Proposition 2.27. There are two special cases.
The first case is given by f = f(x). We may take g = 1 and hence g0 = 00. So
we obtain the following:

COROLLARY 2.30 Letu € C(R) N C%(Q) satisfy
det(D%u) = f(x) inQ



2.5. ALEXANDROFF MAXIMUM PRINCIPLE 43

for some f € C(). Then there holds
diam(2) 1/n
sp ] = suplul + S0 (/ Ifl”) .
Q Q2

The second case is about the prescribed Gaussian curvature equations.

COROLLARY 2.31 Letu € C(Q) N C%(Q) satisfy
det(D2u) = K(x)(1 + |Du>)" s inQ
for some K € C(Q). Then if

Ko = |[K(x)| < wn
/

we have
sup |u| < sup |u| + C diam(£2)
Q 0Q

where C is a positive constant depending only on n and K.

We finish this section by proving a maximum principle in a domain with small
volume that is due to Varadhan.
Consider

Lu =a;jDjju +b;Diju+cu inQ
where {a;; } is positive definite pointwise in 2 and
|bi| +|c| <A and det(a;;) > A
for some positive constants A and A.

THEOREM 2.32 Suppose u € C(Q)NC?(Q) satisfies Lu > 0in Q withu < 0 on
09Q2. Assume diam(Q2) < d. Then there is a positive constant § = §(n, A, A, d) >
0 such that if |2| < 6§ thenu < 0 in Q.

PROOF: If ¢ < 0, thenu < 0by Theorem 2.21. In general, write ¢ = ¢ —¢ ™.
Then

aijDijju +biDju—c u>—ctu (= f).
By Theorem 2.21 we have
supu < c(n, A, A,d)||c+u+||Ln(Q)
Q

<c(m A A, d)|ct||poo| Q2" - supu < %supu
Q Q

if |€2| is small. Hence we get u < 0 in Q2. O

REMARK 2.33. Compare this with Proposition 2.13, the maximum principle
for a narrow domain.



44 2. MAXIMUM PRINCIPLES

2.6. Moving Plane Method

In this section we will use the moving plane method to discuss the symmetry
of solutions. The following result was first proved by Gidas, Ni, and Nirenberg.

THEOREM 2.34 Suppose u € C(By) N C%(By) is a positive solution of

Au+ f(u) =0 in By,
u=0 ondB;,

where f is locally Lipschitz in R. Then u is radially symmetric in By and g—’r‘(x) <
0 for x # 0.

The original proof requires that solutions be C2 up to the boundary. Here
we give a method that does not depend on the smoothness of domains nor the
smoothness of solutions up to the boundary.

LEMMA 2.35 Suppose that ) is a bounded domain that is convex in the xi-
direction and symmetric with respect to the plane {x1 = 0}. Suppose u € C(Q2) N
C?(R) is a positive solution of
Au+ f(u)=0 inQ,
8u=0 onadQ2,

where f is locally Lipschitz in R. Then u is symmetric with respect to x1 and
Dy, u(x) <0 forany x € Q with x1 > 0.

PROOF: Write x = (x1,y) € Q for y € R”~!. We will prove
(2.4) u(xr,y) <u(xy,y)

for any x; > 0 and x < xy with xJ 4+ x; > 0. Then by letting xT — —x1, we
get u(x1,y) < u(—xy, y) for any x;. Then by changing the direction x; — —x1,
we get the symmetry.
Let a = sup x; for (x1,y) € Q. For0 < A < a, define
Y,={xeQ:x1> A}
Ty ={x1 = A},
E; = reflection of X, with respect to T,
xX), =0QA—x1,...,x) forx = (x1,...,xn).
In ¥, we define
wy(x) =u(x)—u(xy) forxe ;.
Then we have by the mean value theorem
Aw) +c(x,M)wy =0 in Xy,
wy <0andwy #0 ondX,,

where ¢(x, A) is a bounded function in X .
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We need to show wy < 0in X, for any A € (0,a). This implies in particular
that w, assumes along 0¥ 3 N 2 its maximum in X,. By Theorem 2.5 (the Hopf
lemma) we have for any such A € (0, a)

Dx1w)l|xl:,1 = 2Dx1u{x1=l <0.

For any A close to a, we have wy < 0 by Proposition 2.13 (the maximum
principle for a narrow domain) or Theorem 2.32. Let (A¢, @) be the largest interval
of values of A such that w) < 0in X;. We want to show Ao = 0. If A9 > 0, by
continuity, wy, < 0in X, and wy, # 0 on X, . Then Theorem 2.7 (the strong
maximum principle) implies wy, < 0in X, . We will show that for any small
e>0

Whg—e < 0 in E,{O_g.
Fix § > 0 (to be determined). Let K be a closed subset in X such that |, \
K| < % The fact that wy,, < 0in X, implies
Wy,(x) <—n <0 foranyx € K.
By continuity we have
Wyo—e <0 in K.

For & > 0 small, |Z),_, \ K| < 8. We choose § in such a way that we may apply
Theorem 2.32 (the maximum principle for a domain with small volume) to wy,_
in ¥,,— \ K. Hence we get

wlo—s(x) E O in Eko—s \ K
and then by Theorem 2.10

Wy,—e(x) <0 in Xy .\ K.
Therefore we obtain for any small ¢ > 0

Why—e(X) <0 in Xy ;.

This contradicts the choice of Ag. O
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CHAPTER 3

Weak Solutions: Part I

3.1. Guide

The goal of this chapter and the next is to discuss various regularity results for
weak solutions to elliptic equations of divergence form. In order to explain ideas
clearly we will discuss the equations with the following form only:

—Dj(aij(x)Diu) + c(x)u = f(x).

We assume that Q is a domain in R”. The function u € H(Q) is a weak
solution if it satisfies

/(aijDiuDj(p + cugp) = / fo forany ¢ € HOI(Q),
Q Q

where we assume

(i) the leading coefficients a;; € L°°(2) are uniformly elliptic, that is, for
some positive constant A there holds

aij(X)EE > A|E]*> forany x € Q and £ € R”,

(i) the coefficient ¢ € L™/2(€2) and nonhomogeneous term f € L%(Q).

Note by the Sobolev embedding theorem (ii) is the least assumption on ¢ and f to
have a meaningful equation.

We will prove various interior regularity results concerning the solution u if
we have better assumptions on coefficients a;; and ¢ and the nonhomogeneous
term f. Basically there are two class of regularity results, perturbation results
and nonperturbation results. The first is based on the regularity assumption on
the leading coefficients a;;, which are assumed to be at least continuous. Under
such an assumption we may compare solutions to the underlying equations with
harmonic functions, or solutions to constant-coefficient equations. Then the reg-
ularity of solutions depends on how close they are to harmonic functions or how
close the leading coefficients a;; are to constant coefficients. In this direction we
have Schauder estimates and W2>?-estimates. In this chapter we only discuss the
Schauder estimates.

For the second kind of regularity result, there is no continuity assumption on
the leading coefficients a;;. Hence the result is not based on the perturbation. The
iteration methods introduced by De Giorgi and Moser are successful in dealing
with nonperturbation situations. The results proved by them are fundamental to

47
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the discussion of quasi-linear equations, where the coefficients depend on the so-
lutions. In fact, the linearity has no bearing in their arguments. This permits an
extension of these results to quasi-linear equations with appropriate structure con-
ditions. One may discuss boundary regularities in a similar way. We leave the
details to the reader.

The outline of this chapter is as follows: The first section provides some gen-
eral knowledge of Campanato and BMO spaces that are needed in both Chapters 3
and 4. Sections 3.3 and 3.4 as well as Sections 5.4 and 5.5 can be viewed as per-
turbation theory (from the constant-coefficient equations). The former deals with
equations of divergence type, and the latter is for nondivergence type equations.
The classical theory of Schauder estimates and L?-estimates are also contained in
the latter treatment. Note we did not use the classical potential estimates. Here
two papers by Caffarelli [2, 3] and the book of Giaquinta [S] are sources for further
reading.

3.2. Growth of Local Integrals

Let Bgr(xp) be the ball in R” of radius R centered at xo. The well-known
Sobolev theorem states that if u € WP (Bgr(xo)) with p > n then u is Holder-
continuous with exponent o = 1 —n/p.

In the first part of this section we prove a general result, due to S. Campanato,
which characterizes Holder-continuous functions by the growth of their local in-
tegrals. This result will be very useful for studying the regularity of solutions to
elliptic differential equations. In the second part of this section we prove a result,
due to John and Nirenberg, which gives an equivalent definition of functions of
bounded mean oscillation.

Let Q be a bounded connected open set in R” and let u € L!(£2). For any ball
By (x0) C 2, define

|
Uxgr = —————
0T By (x0)

By (x0)

THEOREM 3.1 Suppose u € L?(RQ) satisfies

/ U — x> < M?r"*2*  forany B,(x) C Q

By (x)
for some a € (0,1). Then u € C*(Q) and for any Q' € Q there holds
|u(x) —u(y)|
sup [u| + sup —————— < c{M + [lul12@)}
Q/ x,yeQ’ |)C - y|

x#y
wherec = c(n,a,Q2,Q2') > 0.

PROOF: Denote Ry = dist(R2’,0R). For any xo € Q" and 0 < r; < rp < Ry,
we have

2 2 2
[Uxo,r — Uxgra|” = 2([u(X) — g,r |7+ [U(X) — Uxg,ra|7)
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and integrating with respect to x in B, (xo)

2
2 2 2
Swnr?{ / o f '”_”x°”2'}

B,~1 (x0) Br2 (x0)

[Uxo,r1 — Uxg,r |

from which the estimate
2 2 2
(31) |“x0,r1 uxo 7‘2| < C(I’I)M rl n{rn-i- * + ”g+ Ol}

follows. . _
For any R < Rg, withry = R/2'*! r, = R/2', we obtain

g o+ R = gy -1 gl < ()2~ CFDEMRE

and therefore for h < k

k 1

| ) ) Xh: 1 _ o)
Uxp,2~"R — Uxg2—kRI = 2(h+1)ot 2ie =  2ha .
i=0

This shows that {u,  ,-ig} C R is a Cauchy sequence, hence a convergent one.
Its limit ﬁ (o) is independent of the choice of R, since (3.1) can be applied with
rp =2""Rand r, = 27" R whenever 0 < R < R < Ry. Thus we get

ﬁ(xo) = }HE Uxo,r

with
(3.2) |uxo,r —(xo)| < c(n, W)Mra

forany 0 < r < Ry.

Recall that {uy ,} converges, as r — 0+, in L!() to the function u, by the
Lebesgue theorem, so we have u = % a.e. and (3.2) implies that {u ,} converges
uniformly to u(x) in Q’. Since x + uy , is continuous for any r > 0, u(x) is
continuous. By (3.2) we get

u(x)] < CMR® + |uy R]
forany x € Q" and R < Ry. Hence u is bounded in Q' with the estimate
SSI;P [ul < c{MRG + |[ullz2@)}-

Finally, we prove that u is Holder-continuous. Let x,y € Q' with R = |x —
¥| < Ro/2. Then we have

u(x) —u(y)| < |u(x) —uxarl + [u(y) —uy2r| + [ux 2R — Uy 2R].

The first two terms on the right sides are estimated in (3.2). For the last term we
write

[ux 2R —Uy2R| < [ux 2R —uU(Q)| + Uy 2R — u({)]
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and integrating with respect to ¢ over Bog(x) N Bar(y), which contains Bg(x),

yields
2 2 2
= 1Br(0)| [u — ux,2R| + lu — uy,2R|

2
|ux,2R - uy,2R| =
Bor(x) Br(y)

<c(n,a)M?R?*.

Therefore we have
lu(x) —u(y)| < cn,a)M|x — y|*.
For |x — y| > Ry/2 we obtain
1
u(x) —u(y)| < 2sup ful < ciM + —llullL2plx — y[*
Q/ RO
This finishes the proof. ]

A special case of the Sobolev theorem is an easy consequence of Theorem 3.1.
In fact, we have the following result due to Morrey.

COROLLARY 3.2 Suppose u € Hkl)c(Q) satisfies

/ |Du|? < M2r"2T2% forany By(x) C Q

B, (x)
for some a € (0,1). Then u € C*(Q2) and for any Q' € Q there holds
|u(x) —u(y)|
sup [u| + sup —————— < c{M + [lul12@)}
Q/ x,yeQ’ |x - y|

X#y
where c = c(n,a,2,Q’) > 0.

PROOF: By the Poincaré inequality, we obtain
/ U —uyr|* < c(n)r? / |Du|? < c(n)M?r"+2*

B, (x) By (x)
By applying Theorem 3.1, we have the result. ([

The following result will be needed in Section 3.3.
LEMMA 3.3 Suppose u € H(Q) satisfies
/ |Du|?> < Mr*  for any B,(xo) C Q

By (xo0)
for some w € [0,n). Then for any Q' € Q there holds for any B,(x¢) C Q with

X0 e Q’
[ |u|2sc(n,x,u,sz,sz/>{M+/u2}M
Q

By (x0)
where A = w4+ 2if u <n —2and XA is any number in [0,n) ifn —2 < u < n.
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PROOF: As before, denote Ry = dist(2’, 02). For any x¢g € Q' and 0 < r <
Ry, the Poincaré inequality yields
/ U =ty > < cr? / |Dul?>dx < c(n)Mr*+2.
By (x0) By (x0)
This implies that
[ =t = conmr?
By (x0)

where A is as in Theorem 3.3. For any 0 < p < r < Ry we have

/“252 / g, |* +2 / U — tx,r|?

By (x0) By(x0) By (x0)
(3.3) < c()p" |uxo.r|* +2 / |t — U, 2
By (x0)
0 n
< c(n)(—) / u? + Mr*
r
By (xo0)
where we used
c(n)
|ux0,r|2 = o / u.
By (xo0)
Hence the function ¢(r) = [ u? satisfies the inequality
By (x0)

(3.4) d(p) < C(n){(?)nqﬁ(r) + er} forany0 < p <r < Ry

for some A € (0, n). If we may replace the term M r* in the right by Mp*, we are
done. In fact, we would obtain that for any 0 < p < r < Ry there holds

3.5) /MZSC{(g)A / u2+Mp*}.

B, (x0) B, (x0)

Choose r = Ryp. This implies

/ u? fcpk{/uzikM} for any p < Ry.
By (x0) Q

For this purpose, we need the following technical lemma.
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LEMMA 3.4 Let ¢(t) be a nonnegative and nondecreasing function on [0, R]. Sup-
pose that

$(p) < A[(?) + s]qs(r) + B

forany 0 < p <r < R, with A, B, «, B nonnegative constants and < «. Then
forany y € (B, ), there exists a constant g = €o(A, o, B,y) such that if e < &g
we have forall0 < p <r <R

Y
000 =cf(£) 61+ 5P

where c is a positive constant depending on A, a, B, y. In particular, we have for

anyO) <r <R

bR
RY

¢)(r)§c{ +Brﬂ}.

PROOF: Fort € (0,1) and r < R, we have
P(tr) < ATl + ev % (r) + BrP.

Choose 7 < 1 in such a way that 247% = t¥ and assume €97~ % < 1. Then we get
foreveryr < R
$(r) < '¢(r) + BrP
and therefore for all integers k > 0
k
d(T*Tr) < Y p(Fr) + B*BrB < kDY g () 4+ BKB P Z /=P
=0
BtkB B
(k+1y -
<t ¢(r)+1_fy—ﬂ'

k+2 k+1

By choosing k such that T°74r < p < t®7'r, the last inequality gives
1 (p) BpP
< _|Z -_F
O

In the rest of this section we discuss functions of bounded mean oscillation
(BMO). The following result was proved by John and Nirenberg.

THEOREM 3.5 (John-Nirenberg Lemma) Suppose u € L1(Q) satisfies
/ lu —ux,| < Mr" forany B,(x) C Q.

By (x)
Then there holds for any By (x) C Q

/ e%lu_ux.r| < Cr™
B, (x)

for some positive pg and C depending only on n.
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REMARK 3.6. Functions satisfying the condition of Theorem 3.5 are called
functions of bounded mean oscillation (BMO). We have the following relation:

L C4+ BMO.
The counterexample is given by the following function in (0, 1) C R:
u(x) = log(x).

For convenience we use cubes instead of balls. We need the Calderon-Zyg-
mund decomposition. First we introduce some terminology.

Take the unit cube Q. Cut it into 2" equally sized cubes, which we take as
the first generation. Do the same cutting for these small cubes to get the second
generation. Continue this process. These cubes (from all generations) are called
dyadic cubes. Any (k + 1)-generation cube Q comes from some k-generation cube
Q , which is called the predecessor of Q.

LEMMA 3.7 Suppose f € L'(Qq) is nonnegative and o > |Qq|™! fQo fisa
fixed constant. Then there exists a sequence of (nonoverlapping) dyadic cubes

{0} in Qg such that

f(x) <« a.e.inQo\UQj, afL/‘fdx<2"a.
: o1/

PROOF: Cut Qg into 2" dyadic cubes and keep the cube Q if |Q|! /. 0 f

> «. For others keep cutting and always keep the cube Q if |Q|™! [ 0 f > o and
cut the rest. Let {Q;} be the cubes we have kept during this infinite process. We
only need to verify that

f(x) <a ae.in QO\UQj-
J

Indeed, any predecessor Q of Q; that we have kept has to satisfy ﬁ /, 0 fdx <a.
1
Thus for Q;, one has a < @IQ_,- fdx <2"a. Let F = Q¢ \ Uj 0;. Fo.r
any x € F, from the way we collect {Q;}, there exists a sequence of cubes Q'
containing x such that
1 .
@/f <a and diam(Q') - 0asi — oo.
o
By the Lebesgue density theorem this implies that
f <a ae.inkF.

O

PROOF OF THEOREM 3.5: Assume 2 = Q. We may rewrite the assumption
in terms of cubes as follows:

/|u—uQ| < M|Q| forany Q C Qp.
0
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We will prove that there exist two positive constants ¢ (n) and ¢, () such that for
any Q C Qy there holds

tre 0 =gl > 1l < alQlexn(~ 521 ).

Then Theorem 3.5 follows easily.
Assume without loss of generality M = 1. Choose

a>1>[Q™" / U —ug,ldx.
Qo
Apply the Calderon-Zygmund decomposition to f = |u —ug,|. There exists a

sequence of (nonoverlapping) cubes {Q(l) }Qil such that

n
: /|u ug,l <2"a
IQ()I

(1)

[u(x) —ug,| <a ae.xe Qo) U Qj(.l)-
Jj=1
This implies

1) 1 1
Y01 < 5/|u—ugo| < ~10o].

/|u ug,ldx <2"a.

(1)
J

|uQ(1> —ug,| =

IQ(”I

The definition of the BMO norm implies that for each j
|Q(1)| / |u — Q(1)|dx<1<Ol
o
Apply the decomposition procedure above to f = |u —u Q(1)| in Q( ). There

exists a sequence of (nonoverlapping) cubes {Q( )} in U Q( ) such that

ZIQ(2)|< Z/IM—MQ<1>I<—ZIQ(1)I< 104l
Q(l)

and
|u(x) — uQ;_nI <a aexé€ Q](.l) U Qj(;)’

which implies

u(x) —ug,l <2-2"e ae.xe Qo\|J0O?.
j
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Continue this process. For any integer k > 1 there exists a sequence of disjoint
cubes {QJ(.k)} such that

k 1
22121 < =100l
J

and
k
lu(x) —ug,| <k2"a ae.x e Qo) U Q](. ),
J
Thus
00 0 1
[{x € Qo lu—ugy| > 2"kei] = 371071 < —1Qol.
Jj=1
For any ¢ there exists an integer k such that ¢ € [2"ka, 2" (k 4+ 1)«). This implies
ak = go=*+D = gp=Gk+Dloga - qe et
This finishes the proof. (I

3.3. Holder Continuity of Solutions

In this section we will prove Holder regularity for solutions. The basic idea
is to freeze the leading coefficients and then to compare solutions with harmonic
functions. The regularity of solutions depends on how close solutions are to har-
monic functions. Hence we need some regularity assumption on the leading coef-
ficients.

Suppose a;; € L°°(By) is uniformly elliptic in By = B1(0), that is,
MEP? < a;j(x)&EE < A|E]> forany x € By, £ € R,

In the following we assume that a;; is at least continuous. We assume that u €
H'(B,) satisfies

(%) /aijD,'ungo +cup = /fgo for any ¢ € Hol(Bl).
B, By

The main theorem we will prove are the following Holder estimates for solutions.

THEOREM 3.8 Let u € H'(By) solve (x). Assume a;j € C%(By), c € L™(By),
and f € L1(By) for some q € (%,n). Thenu € C*(By) witha = 2—2 € (0,1).
Moreover, there exists an Ry = Ro(A, A, 7, ||c||Ln) such that for any x € By,
and r < Ry there holds

DUl < Cr 22 £ 12y g,y + il 5}
By (x)
where C = C(A, A, 1, ||c||Ln) is a positive constant with
laij(x) —aij(y)| < ©(|x —y|) foranyx.y € By.
REMARK 3.9. In the case where ¢ = 0, we may replace |[u| g1(p,) with
| Dullr2(s,)-
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The idea of the proof is to compare the solution # with harmonic functions and
use the perturbation argument.

LEMMA 3.10 (Basic Estimates for Harmonic Functions) Suppose {a;;} is a con-
stant positive definite matrix with

MEI? < aij&ig; < AE> forany§ € R”
for some 0 < A < A. Suppose w € H(B,(xg)) is a weak solution of
(3.6) aijjDijjw =0 in By(xo).

Then for any 0 < p < r, there hold

n
/ |Dw|2§c(£) / Dwl?,
r

By (x0) By (x0)
o n+2
Dw— Do =e(2) [ 1w D, P,
B, (x0) By (x0)

where ¢ = c(A, ).

PROOF: Note that if w is a solution of (3.6), so is any one of its derivatives.
We may apply Lemma 1.41 to Dw. (I

COROLLARY 3.11 (Comparison with Harmonic Functions) Suppose w is as in
Lemma 3.10. Then for any u € H(B,(x¢)) there hold for any 0 < p < r

n
/ |Du|2§c{(ﬁ) / |Dul? + / |D(u—w)|2}
r
Bp(xo) Br(XO) Br(xo)

and

/ |Du — (D) xg,pl? <

Bp(x0) n+2
(5) [ 1w [ 6w

By (x0) By (xo0)

where ¢ is a positive constant depending only on A and A.



3.3. HOLDER CONTINUITY OF SOLUTIONS 57

PROOF: We prove this by direct computation. In fact, with v = u — w we
have forany 0 < p <r

/ |Du|? <2 / |Dw|? + 2 / |Dvl|?

By (x0) By (x0) By (x0)
SC(B)n / |Dw|? +2 / |Dvl|?
' By (x0) Br(x0)
5(3(8)” / |Du|2+c|:1+ (B)n} / |Dvl|?
' B, (x0) ’ By (x0)

and

/ |Du — (Du)x,.p)*

BD(XO)
<2 / |Du — (Dw)x, p|* + 2 / |Dvl?
B, (x0) By (x0)
<4 / |Dw — (Dw)xy p|* + 6 / |Dvl|?
B, (x0) By (x0)
o n+2
§c(;) / |Dw — (Dw)xy.r|> +6 / |Dvl?
B, (x0) B, (x0)
p n+2 P n+2
5(:(;) / |Du—(Du)x0,r|2+c|:1+ (;) i| / |Dv|?.
By (x0) By (x0)

O

REMARK 3.12. The regularity of u depends on how close u is to w, the solu-
tion to the constant-coefficient equation.

PROOF OF THEOREM 3.8: We shall decompose u into a sum v + w where w
satisfies a homogeneous equation and v has estimates in terms of nonhomogeneous
terms.

For any B, (xo) C B write the equation in the following form:

/aij (xo)DjuD,¢ = / Jo —cug + (aij(xo) — aij(x)) DiuDjp.
B B,

In B, (xo) the Dirichlet problem

/ aij(xo)DiwDjp =0 forany ¢ € Hol (Br(x0))
Br(x())
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has a unique solution with w with w —u € HO1 (Br(x0)). Obviously the function
V=u—w e HO1 (Br(xp)) satisfies the equation

/ aij(xo)DivDjg = [ Jo —cup + (aij(xo) —aij(x))DiuDj¢
B, (x0) By (xo)
for any ¢ € HO1 (Br(x0)).

By taking the test function ¢ = v we obtain

/ |Dv|25c{r2<r) / |Du|2+(/ |c|")2/" [

By (x0) By (x0) By (xo0) By (x0)
n+2

(] )]
B (x0)

where we use the Sobolev inequality

(/ Unz—nZ)%SC(}’l)(/ |Dv|2)1/2

By (x0) By (x0)

forv e HO1 (Br(x0)). Therefore Corollary 3.11 implies forany 0 < p < r

/ |Du|25c{[(§)n+rz(r)} [ 1

B, (xo B (xo
3.7) . iz
n 2 2n_ n
(o) [ ([ o)
B, (x0) By (x0) By (x0)

where ¢ is a positive constant depending only on A and A. By Holder inequality

there holds
2n % 2/q
( / |f|n+2) < ( / |f|q) pn—2+2a

By (x0) By (xo0)

where @ = 2—% € (0,1)if 5 < g < n. Hence (3.7) implies for any B, (xo) C B
andany0 < p <r

[ o <cl[() ] [ s

By (x0) By (x0)

() )

By (x0) By (x0)
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CASE1l. ¢ =0.

We have for any B, (x9) C B; andforany0 < p <r

/ |Du|25c{[(§) +r2(r):| / | Dul 4 r" 22 f2, 0,

By (x0) By (xo0)

Now the result would follow if in the above inequality we could write p"~272%

instead of 7" ~272%_ This is in fact true and is stated in Lemma 3.4. By Lemma 3.4,
there exists an Ro > 0 such that for any xo € By, andany 0 < p <r < Ro we

have
p n—242a
/ |Dul? < C{(;) / |Du|* + pn_2+2a||f||%q(31)}-

By (x0) By (x0)

In particular, taking r = Rg yields for any p < Ry

[ 1ot = e 10+ 1 g
B

Bp(xO)

CASE 2. General case.

We have for any B,(x9) C Byandany 0 < p <r

/ |DM|2 SC{[(;)n+rz(i’)] / |Du|2+r"_2+2“)((F)

By (x0) By (x0)

+/u2}

By (x0)

(3.8)

where y(F) = ”f”i‘/(Bl)' We will prove for any xo € By, andany 0 < p <
1

r < 3
/ |Dul? < c{[(f) +12(r):| / |Dul?
(39) By (x0) By (xo0)
+rn—2+2a|:X(F)+/u2+/|Du|2i|}.
B B

We need a bootstrap argument. First by Lemma 3.3, there exists an R; € (%, 1)
such that there holds for any xo € Bg, andany 0 <r <1— R

(3.10) / u? < CrSI{/ | Dul|? +/u2}

By (x0) B B,
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where §; = 2if n > 2 and §; is arbitrary in (0,2) if n = 2. This, with (3.8), yields

[ 1pui <
B (x0)
n
P -
C{[(;) +r2(r)] / |Du|® + " 2+2"‘)((F)+r51||u||§11(}31).

By (xo0)
Then (3.9) holds in the following cases:

(i) n = 2, by choosing §; = 2¢;
(ii) n > 2 while n — 2 4+ 2 < 2, by choosing §; = 2.

Forn > 2andn — 2 4+ 2« > 2, we have

/ IDulzfc{[(g) +r2(r)] / |Dul? + r2[x(F) + lull 5,

By (x0) By (x0)

Lemma 3.4 again yields for any xo € Bg, andany 0 <r <1— R,

[ 1Dul = )+ oy
By (x0)
Hence by Lemma 3.3, there exists an R, € (%, R1) such that there holds for any
Xo € BRyandanyO <r < R;i — R»
G.11) [ =) + iy )
By (x0)

where 8§, = 4 if n > 4 and &, is arbitrary in (2,n) if n = 3 or 4. Notice (3.11) is
an improvement compared with (3.10). Substitute (3.11) in (3.8) and continue the
process. After finite steps, we get (3.9). This finishes the proof. ([

3.4. Holder Continuity of Gradients

In this section we will prove Holder regularity for gradients of solutions. We
follow the same idea used to prove Theorem 3.8.
Suppose a;; € L°°(By) is uniformly elliptic in By = B1(0), that is,

AME? < a;j(x)&€; < A|E|* forany x € By, £ € R™.
We assume that u € H!(B)) satisfies

(%) [aijDiuDjw + cup = /fgo for any ¢ € HOI(Bl).
Bl Bl

The main theorems we will prove are the following Holder estimates for gradients.
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THEOREM 3.13 Let u € H'(By) solve (x). Assume a;; € C%(By), ¢ € L4(By)
and f € L9(By) for some q > n and a = 1 —g € (0,1). Then Du € C*(By).
Moreover, there exists an Ry = Ro(A, |ajj|ca, |c|La) such that for any x € By,
and r < Ry there holds

[ 1Du= Duas = gy, Tl )
B, (x)

where C = C(A, |ajj|ce, |c|La) is a positive constant.

PROOF: We shall decompose u into a sum v + w where w satisfies a homo-
geneous equation and v has estimates in terms of nonhomogeneous terms.
For any B, (xo) C Bj write the equation in the following form:

faij(xo)D,-uDﬂﬁ = / [ —cug + (aij (xo) — aij(x)) DiuD;¢.
B] Bl

In B;(xg) the Dirichlet problem
aij (xo) DiwDjp =0 forany ¢ € Hy (Br(x0))
By (x0)

has a unique solution w with w —u € HO1 (Br(x0)). Obviously the function v =
U—w e HO1 (Br(xo)) satisfies the equation

/ ajj(xo)DivDjp = / fo —cup + (ajj(xo) —a;jj(x))DjuD;@
By (xo0) By (x0)
for any ¢ € HO1 (Br(x0)).

By taking the test function ¢ = v we obtain

/ |Dv|2§c{r2(r) / |Du|2—|—(/ |c|”)% / u?

By (x0) By (xo0) By (x0) B/ (x0)
n+2
2n_ n
([ )
By (x0)

Therefore Corollary 3.11 implies forany 0 < p <r

/ |Du|2§c{[(§)n+r2(r)] / |Dul?

(3‘12) By (x0) By (x0)
n+2

() [l [ o)

By (x0) By (x0) By (x0)
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and
/ |Du—(Du)x0,p|2
B, (x0)
0 n+2
- _ 2 2 2
(3.13) 50{(r) f |Du — (Du)xo,r|” + 7°(r) f | Du|
Br(x0) By (x0)
2 n+2
n 2on n
) [ (] )
By (x0) By (xo0) By (x0)

where ¢ is a positive constant depending only on A and A.
By the Holder inequality we have for any B, (xo) C Bj

(/ |f|n%) " s(/ Iflq)%r”““,

By (x0) By (xo0)

(o) =] )

By (x0) By (xo0)

n+2

1 —1_n
witha = 1 7

CASE 1. a;; = const, ¢ = 0.
In this case 7(r) = 0. Hence by estimate (3.13) there holds for any B, (xg) C
BiandO<p<r,

|[Du — (Du)xo,p|2 =

Bp(xO) P n+2
C{(7) / |Du — (Du)xo,r I + "2 f 11708y (-

By (x0)
By Lemma 1.4, we may replace r" 2% by p 2% to get the result.

CASE2. ¢ =0.
By (3.12) and (3.13), we have for any B,(xg) C B; and any p < r

n
(3.14) / |Du|2§C{[(§) +r2“] / |Dul? + "2 fl17a s,

Bp (x0) B (xo0)
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and
[ 1w o
By (x0)
n+2
<cl(? D — (D) g |2
(3.15) =5 | Du = (Dut) x|
By (x0)
wr2 [ DUl
By (xo0)
We need to estimate the integral fBr(xO) |Du|?. Write y(F) = ”f”iq(Bl)‘

Take small § > 0. Then (3.14) implies

/ |Du|2§C{|:(§)n+r2“i| / |Du|2+r”—23X(F)}.

By (x0) By (xo)

Hence Lemma 3.4 implies the existence of an R € (%, 1) with r;y = 1 — Ry such
that for any xo € Bg, and any 0 < r < r; there holds

(3.16) [ 1Dul = ) ¢ DUl
By (xo0)
Therefore by substituting (3.16) in (3.15) we obtain forany 0 < p <r <r;

/ |Du — (Du)yy o <

By (x0)

n+2
P -
H(E) [ 15w Dunrl? 2B ) 4 [ Dulp )
By (x0)
By Lemma 3.4 again, there holds for any xo € Bg, andany 0 < p <r <ry

/ |Du — (Du)x(),p|2

Bp(xO)
0 n+20—2§8
< C{(?) [ 1= D),
B,
+ p a2 (F) 4 ||Du||1242(31)] '

With r = rq this implies that for any xo € Bg, andany 0 < r < ry

/ | Du — (Du)xo,r|2 = Crn+2a_28{X(F) + “Du“iz(Bl)}'
By (x0)
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Hence Du € C~ 5 for any § > 0 small. In particular, Du € L{° and there holds

(3.17) sup [Duf? = C{x(F) + | Dulljz g, )
3/4

By combining (3.15) and (3.17), there holds for 0 < p < r < r; and any
X0 € Bl/2

[ 1Du= Dw P <

B, (x0) n+2

N(E) [ 15w @uragsl? ) + 1D
By (x0)

By Lemma 3.4 again, this implies

[ 1Du= Dw P =
By (x0) n+2a
HE) [ 10w D+ 4y + 1Dl
By (x0)
Choose r = ry. We have for any xo € Byjp and r < rq

/ |Du - (Du)xo,r|2 =< Crn+2a{X(F) + HDu”IZJZ(Bl)}'
By (xo0)

CASE 3. General case.
By (3.12) and (3.13) we have for any B,(x9) C Bjand p <r

f |Du|2§C{|:(§)n+r2“] / | Du?

(3 18) Bp(xO) B/ (x0)
+ / u? +r”+2°‘)((F)}
Br(x())
and
/ |Du — (D) x,.p)*
B, (x0)
P n+2
(3.19) = C{(;) / |Du — (Du) xo.r*
B, (x0)
+r2“[ / u? + / |Du|2] +r”+2°‘)((F)}
By (xo0) By (xo0)

where 7(F) = [/ 124(5,)-
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In (3.18), we may replace r” 2% by r”. As in the proof of Theorem 3.8, we
can show that for any small § > 0 there exists an R; € (%, 1) such that for any
X € Bpyandr <1— Ry

(3.20) [ 1Dul = )
B/ (x0)

By Lemma 3.3, we also get

(321) [ = e + i
By (x0)

Write x(F,u) = || fl|I74 + [lu]|%,- Then (3.19), (3.20), and (3.21) imply that

/ |Du — (D) xy,p|* <
Bp(xo) ) n+2
c{(;) / |Du — (Du)xO,r|2 + r”+20‘_25)((F, u);.
By (x0)

Hence Lemma 3.4 and Theorem 3.1 imply that Du € Cl‘(’)‘c_‘g for small § < «. In

particular, u € Ckl)c with the estimate

(3.22) sup |u|? + sup |Du|? < Cx(F,u).

B34 B34

Now (3.19) and (3.22) imply that

f |Du_(Du)xo,p|2 =

Bp(xO)
0 n+2
l(E) [ 1w @i+ ),
By (x0)
This finishes the proof of Theorem 3.8. ]

REMARK 3.14. It is natural to ask whether f € L°°(B;), with appropriate

assumptions on a;; and ¢, implies Du € C1(13c~ Consider a special case

/D,-uD,-(p = /f(p for any ¢ € HOI(Bl).
B B
There exists an example showing that f € C and u € Clg);a for any o € (0, 1)
while D?u ¢ C.
EXAMPLE. In the n-dimensional ball Bg = Bg(0) of radius R < 1 consider
x3 —x3 { n+2 4 1
2Ix> | (=log|x!/2 = 2(—log|x|)3/2

Au =
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where the right side is continuous in By if we set it equal to 0 at the origin. The
function u(x) = (x% — x%)(— log|x|)1/2 € C(Bg) N C®°(Bg \ {0}) satisfies the
above equation in Bg \ {0} and the boundary condition u = /—log R(x? —x3) on
dBR. But u cannot be a classical solution of the problem since limjy|o D11u =
oo and therefore u is not in C2(BR). In fact, the problem has no classical solution
(although it has a weak solution).

Assume on the contrary that a classical solution v exists. Then the function
w = u — v is harmonic and bounded in Bg \ {0}. By a theorem from harmonic
function theory on removable singularities, w may be redefined at the origin so that
Aw = 0in Bg and therefore belongs to C2(Bg). In particular, the (finite) limit
lim|y| .o D11u exists, which is a contradiction.
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CHAPTER 4

Weak Solutions, Part 11

4.1. Guide

This chapter covers the well-known theory of De Giorgi—Nash—Moser. We
present the approaches of both De Giorgi and Moser so students can make com-
parisons and can see that the ideas involved are essentially the same. The classical
paper [12] is certainly very nice material for further reading; one may also wish to
compare the results in [7, 12].

4.2. Local Boundedness

In the following three sections we will discuss the De Giorgi—-Nash—Moser
theory for linear elliptic equations. In this section we will prove the local bound-
edness of solutions. In the next section we will prove Holder continuity. Then in
Section 4.4 we will discuss the Harnack inequality. For all results in these three
sections there is no regularity assumption of coefficients.

The main theorem of this section is the following boundedness result.

THEOREM 4.1 Suppose a;j € L*°(By) and ¢ € L(By) for some q > % satisfy
the following assumptions:
aij(x)&& = A§|> forany x € By, § € R,
and
laijlLee + llcllLe < A
for some positive constants A and A. Suppose that u € H'(By) is a subsolution
in the following sense:

(%) /aijDiungo + cup < /f(p forany ¢ € HOI(Bl) and ¢ > 0in B;.
B, B,

If f € L4(By), thenut € L° (B1). Moreover, there holds for any 6 € (0, 1) and
any p >0

reof
supu” <C{———r
5, (1= gyl

where C = C(n, A, A, p,q) is a positive constant.

lut ey + 11 f lLacay)

In the following we use two approaches to prove this theorem, one by De Giorgi
and the other by Moser.

PROOF: We first prove the theorem for 6 = % and p = 2.

67
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METHOD 1: DE GIORGI’S APPROACH: Consider v = (u — k)T fork > 0
and ¢ € Col(Bl). Set ¢ = v{? as the test function. Note v = u—k, Dv = Du a..

in{u > k}and v = 0, Dv = 0 a.e. in {u < k}. Hence if we substitute such de-
fined ¢ in (x), we integrate in the set {u > k}.
By the Holder inequality we have

/aijDiuDjsﬂ = [%'DWDJUZZ +2aij DiuD;¢vl

zx/|Dv|2c2—2A/|Dv||D;|vz

A 2A2
=5 [1pore - 25 [ g
Hence we obtain

[ Do sC{[v2|DC|2+/|c|v2§2+k2/|c|z2+f|f|v§2}

from which the estimate

[ 1pwor sc{/v2|Dz|2+/|c|v242+k2/|c|c2+/|f|vzz}

follows.
Recall the Sobolev inequality for v{ € HO1 (B1),

( / (vc)z*)z_* <co [ D00
B

B

where 2* = 2n/(n — 2) forn > 2 and 2* > 2 is arbitrary if n = 2. The Holder
inequality implies that with § > 0 small and ¢ < 1

[ (/IfIq)é(/|v§|2*)2L*l{vé;éo}ll—%*—é

5 5 Lyl 1
sc@|fllza| | IP@OIT) [l # 03277«
2_2
<3 [IDGOP +cn. )11 altvs £ 01"+ 77.
Note 1 + % — % >1-— é if ¢ > %. Therefore we have the following estimate:

fpeor el [ oo+ fiene+a2 [+ e 2 o4

where F' = || f||La(B,)-
We claim that there holds

. / DY) < C{/ 2| DE? + (k2 + F2)|{vt # o}ﬁ}
if [{v # 0}| is small.
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It is obvious if ¢ = 0. In fact, in this special case there is no restriction on the
set {v¢ # 0}. In general, the Holder inequality implies that

Jrewe=(] 'C'q)é(/ (“Dz*ﬁl{v#o}ﬂ—%—é

se(n)/lch)P(/ |c|Q)E|{vz £ o)

1
q 1
f|c|c2 < (/ |c|q) e # 034
Therefore we have

[ 1pwor 5C{/U2|D§|2+/ID(UZ)|2|{1)§#O}I%_é

and

NI ¢0}|1‘%}.

This implies (4.1) if |[{v{ # 0}| is small. To continue, we obtain by the Sobolev

inequality
[wer < ( / (vc)z*) e £ 0y

< et [ IDEOPIE # 017

Therefore we have
f<v€>2 < C{f V2 DLPHE # 037 + (k + F)2[{vl # 0}|1+%—$}

if |[{v¢ # 0}] is small. Hence there exists an € > 0 such that

[wer = C{/ VIDEPIE £ OF + (k + F)?| (L # 0}|1+5}

if |{v¢ # 0}] is small. Choose the cutoff function in the following way. For any
fixed0 <r < R < 1choose { € C§°(Bg) suchthat{ = 1in B, and0 < <1
and |D¢| < 2(R—r)"lin By. Set

Ak,r)={x€ By :u>k}.
We conclude that forany 0 < r < R < landk >0

4.2) (u—k)? <
A(Zn |
C%mlfl(k, R)I® / u—k)? + (k + F)?|A(k, R)|"T¢

A(k,R)
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if |A(k, R)| is small. Note

1 1
Ak R)| < ¢ / wt < et
Ak,R)

Hence (4.2) holds if k > ko = C|u™||;2 for some large C depending only on A
and A.
Next we would show that there exists some k = C (ko + F) such that
(u—k)* =
A(k,1/2)

To continue we take any &7 > k > ko and any 0 < r < 1. It is obvious that
A(k,r) D A(h,r). Hence we have

[ w-m2= [ w-kp

A(h,r) A(k,r)

and

1
AL = 1B 0=k > h =K} = = /(u—k)z.
A(k,r)

Therefore by (4.2) we have for any & > k > k¢ and % <r<R<l1

/ (u—h)? < c{(R / (u—h)?+ (h+ F)?|A(h, R)|}|A(h R)[®

A(h,r) A(h R)

- 1 (h + F)? 1 S\ e
—ChR—w2+<h—m2hh—m%( / W_k))
A(k,R)

or
1 h + F
+ + | 1+¢
@3 0=l = O+ T - 071
Now we carry out the iteration. Set ¢(k,r) = [[(u — k) || 2(p,). Fort = % and

some k > 0 to be determined. Define for £ = 0,1, ...,
1
k¢ =k0+k(1—27) (Z ko + k),
1
re =r+?(l—r).
Obviously we have

k 1
ke —ke—1 = o re-1—rg= 27(1 —1).
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Therefore we have for£ =0, 1, . ..

2t 2b(ko + F + k)) 2¢¢
lhgre) = Cyo——+ . -

- C ko+F+k
“1-c klte

Next we prove inductively forany £ = 0, 1,...,

[p(ke—y,re—1)]' e

2O oy, re_p)]H T

@(ko,10)
;

4.4) plkg,rg) < for some y > 1

if k is sufficiently large. Obviously it is true for £ = 0. Suppose it is true for £ — 1.
We write

p(ko.r0) |'* _ p(ko.ro)* ¢(ko.ro)
yes—(1+s)' pe

(et re_)]'+* < { 0!
Y

Then we obtain

Cy't® ko+ F+k . 28079 o(ko, ro)
1 : k1+8 : [(p(k()’ro)] : Le ' Y/ *
- Y Y
Choose y first such that y& = 2!*¢. Note y > 1 . Next, we need
Cylte ((p(ko,ro))s ko+ F+k -
k k -

@lke.re) <

1.

1—1
Therefore we choose
k = Cyxlko + F + ¢(ko,10)}
for Cy large. Let £ — 400 in (4.4). We conclude
olko +k,7) =0.

Hence we have

supu® < (Cx + D)iko + F + @(ko.70)}.
B2

Recall kg = C||”+||L2(Bl) and ¢(ko, ro) < ||“+||L2(Bl)- This finishes the proof.
O

Next we give the second proof of Theorem 4.1.

METHOD 2: MOSER’S APPROACH: First we explain the idea. By choosing
the test function appropriately, we will estimate the L?!-norm of u in a smaller
ball by the L?2-norm of u for p; > p> in a larger ball, that is,

lullLry s,y = ClullLr2(s,,)

for p1 > p, and r; < rp. This is a reversed Holder inequality. As a sacrifice C

behaves like rzl -~ By iteration and a careful choice of {ri} and {p;}, we will

obtain the result.
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Forsome k > Oandm > 0,setz = ut + k and

u ifu <m,

0, =
" k+m ifu>m.

Then we have Dit,, = 0in {u < 0} and {u > m} and u, < u. Set the test
function

¢ =’ (ih 7 — kP*1) € Ho (B1)
for some § > 0 and some nonnegative function n € CO1 (B1). Direct calculation
yields

Do = Bn*ub  Dityii + n*ub, Dt + 29D (b — kP +1)
= 0?ul,(BDTy + D) + 21Dy (bt — kPH).

We should emphasize that later on we will begin the iteration with § = 0. Note

¢ = 0and D¢ = 0in {u < 0}. Hence if we substitute such ¢ in the equation we

integrate in the set {u > 0}. Note also that u* < % and 175,17 — kB < 175,17 for

k > 0.
First we have by the Holder inequality

/a,-jD,-ungo
= /aijDiﬁ(ﬁDjﬁm + D;u)n*ub, +2/a,~,~D,~ﬁDjn(z7§,ﬁ—kﬂ+l)n
zAﬁ/nzaﬁmﬁmﬁ+A/n2ﬁﬁ|Dﬁ|2—A/|Dﬁ||Dn|a§,17n
P A o 2A? g _
=ap [ eaipu + 5 [ehivap - 25 [ Ipupak.
Hence we obtain by noting u > k
,3/;72175;,|Dz7m|2+/n217£,|m7|2
< C{/IDnlzﬁﬁﬁz+/(lclnzﬁf},ﬁz+ Iflnzﬁﬁ,ﬁ}
< C{/|Dn|2ﬁ§,172 +/c0n2agﬁz},
where cq is defined as
I/
-

Choose k = | f||r« if f is not identically 0. Otherwise choose arbitrary k > 0
and eventually let k — 0F. By assumption we have

llcolle < A+ 1.

co = le| +

Setw = L_lgl/zlx_t. Note

IDw|? < (14 B){Bub,| Diim|? + b | Dit|?}.



4.2. LOCAL BOUNDEDNESS 73
Therefore we have
[1pubi =clasp [wipak+a+p) [l
or
[1pwnp =cla+p [wipap+a+p) [ante.
The Holder inequality implies

/cow2n2 = (/ C‘q’)é(/(”w)‘%)l_é < (A+ 1)(/(%)%)1—%

By interpolation inequality and the Sobolev inequality with 2* = nzfz > =1 > 2

if ¢ > %, we have
Il 2 < ellmwlzze + Conq)e™ 20 )2
< el D(w)|l 2 + Cn. q)e 207 [|qwl| 2
for any small &€ > 0. Therefore we obtain
[ 1pani? < c{a +8) [wDaf + +ﬂ)23—3n/w2n2}
and in particular
[ D@ <ca+pr [qonP + i

where « is a positive number depending only on n and g. The Sobolev inequality

then implies
1/x
(/ |nw|2X) =cq +ﬁ)°‘/(IDn|2 +nHw?

where y = %5 > 1forn > 2and y > 2 forn = 2.

Choose the cutoff function as follows. Forany0 <r < R < 1setn € CO1 (BRr)
with the property

n=1inB, and |Dn| <

~“R-—r’
Then we obtain
1/x o
/w2x <C7(1+ﬂ) [wz.
~ (R—r)?
B Bpr

Recalling the definition of w, we have

1/ a
(st scli22 o

B, Br
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Sety = B + 2 > 2. Then we obtain

1/x a
_ (y—=1 _
(/ ”’V"X) =CR—rp f v
B, Br

provided the integral in the right-hand side is bounded. By letting m — 400 we

conclude that )
_ =D\ _
Il < (Clr—r) Wl

provided ||u| v (Bg) < +oo, where C = C(n,q,A,A) is a positive constant
independent of y. The above estimate suggests that we iterate, beginning with
y =2,a82,2x,2%%,....Nowsetfori =0,1,...,

i 1 1
vi =2 and r,-=5+2l.ﬁ.
By y; = yyi—1andri_1 —r; = 1/2/71 we have fori = 1,2,.

lllLvics,,) < C(”,Q,LA)7||l7||w—1(13r,._1)

provided ||u]|z,vi—1( B,,_,) < +oc. Hence by iteration we obtain
_ S _
lillLvi B,y = C= " lullL2(B,):

() =) el

B2 By
Letting i — 400 we get

in particular,

sup it < Cllitll 2,y or suput < C{lu™|2p,) +k}.
By, By,

Recall the definition of k. This finishes the proof for p = 2. (I

REMARK 4.2. If the subsolution u is bounded, we may simply take the test
function
o =@+ —kPHY) € HY(BY)
for some 8 > 0 and some nonnegative function 7 € CO1 (B1).

Next we discuss the general p case of Theorem 4.1. This is based on a dilation
argument.
Take any R < 1. Define

u(y) =u(Ry) fory € Bj.
It is easy to see that # satisfies the following equation:

/Zi,-jD,-iiDj(p + cup < / fqo for any ¢ € Hol(Bl) and ¢ > 0in B,
Bl Bl
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where 5
a(y) = a(Ry), &(y)=R*c(Ry), [f(y)=R*f(Ry),
for any y € Bj. Direct calculation shows

@i ooy + 1€ La(By) = laij|lLooBr) + R* 4 cllLag) < A-

We may apply what we just proved to # in By and rewrite the result in terms of u.
Hence we obtain for p > 2

1 n
o0 = €Yl o + R lecn)
where C = C(n,A, A, p,q) is a positive constant. The estimate in Bgg can be
obtained by applying the above result to B(;_g)r(y) for any y € Bgg. Take
R = 1. This is Theorem 4.1 for any 6 € (0, 1) and p > 2.

Now we prove the statement for p € (0, 2). We showed that for any 6 € (0, 1)
and 0 < R < 1 there holds

1 _n
{[(1 —0)R]"/? It L2z + R* ”f”Lq(BR)}

||M+ ”LOO(BQR) = C

<c 2z + ||f||Lq(Bl)}.

1
o
For p € (0,2) we have

2_
[t <L, [ty
Br Br

and hence by the Holder inequality

1™ | Loo(Bog)
! }
SC{[(l-@)ze]n/z lu ”LOO(BR)(/(” ) dx) +||f”Lq(BR)}
Br
<1 * C ! +\p ”
= E”u Lo (BR) + W u™) + 1 fllLaBr) -
Bgr

Set f(t) = ||u+||Loo(Bt) fort € (0,1]. Thenforany0 <r < R <1

f(")f%f(R)‘Fm

We apply the following lemma to get forany 0 <r < R < 1

lutLrBy) + Cll fllLasy)-

C
f(r) < WHW—”LP(BI) + Cll fllLaBy)-
—r)p

Let R — 17. We obtain for any 6 < 1

C
[ut || LooBy) < —(1 Y lut Loy + CIf lLacs))-
—0)r
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We need the following simple lemma:

LEMMA 4.3 Let f(t) > 0 be bounded in [to, T1] with t9 > 0. Suppose for 19 <
t <s <11 wehave

+ B

A
0 <6/6) + =

for some 0 € [0, 1). Then for any 19 <t < s < 11 there holds

A
f(@) < c(oz,@){(s e + B}.

PROOF: Fix 19 <t < s < 11. For some 0 < 7 < 1 we consider the sequence
{t;} defined by

to=t and fig1 =1t +(1—1)t'(s—1).
Note oo = 5. By iteration
k—1

70 = Fl0) = 00 + | o6 =07+ B '

i=0
Choose T < 1 such that 677% < 1, thatis, 8 < 7% < 1. As k — oo we have

1) < c(a,e){ (—1) 4 B}.

A
(1—1)®
O

In the rest of this section we use Moser’s iteration to prove a high integrability
result that is closely related to Theorem 4.1. For the next result we require n > 3.

THEOREM 4.4 Suppose a;jj € L*°(B1) and ¢ € L"/2(By) satisfy the following
assumption:

MEP? < aij(0EE < AEI> forany x € By, & €R”,

for some positive constants A and A. Suppose that u € H'(By) is a subsolution
in the following sense:

/a,-jD,-uDj(p + cup < /fgo forany ¢ € HOI(Bl) and ¢ > 0in Bj.
Bl Bl

If f € LY(By) for some q € [n+2 %), then ut e Lfloc(Bl)for ql* = %— %
Moreover, there holds

et N o (g, ) = CUT 2y + 1/ Lacs}
where C = C(n, A, A, q, e(K)) is a positive constant with

2/n
= ( |c|"/2) .
{le|>K}
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PROOF: Form > 0, setu# = ut and

_ u ifu<m,
Um = .
m ifu>m.

Then set the test function
Q= nzuﬂ u e H0 (B1)

for some B > 0 and some nonnegative function n € CO1 (B1). By similar calcula-
tions as in the proof of Theorem 4.1 we conclude

1/x
(s
ca +ﬂ)§/|Dn|217£’;772+/|c|nzﬁf;ﬁ2+/|f|nzﬁﬁﬁ}

where y = ;%5 > 1. The Holder inequality implies for any K > 0

f|c|nzﬁ£;,ﬁ251< / b + [ el 7

{lel=K} {lc|>K}
2 n=2
fonzuﬂ 2+( / ICI%) (f(nzﬁﬁ,ﬁz)ﬁ)
{le|>K}

1
K/nzﬁg,ﬁz—l—e(K)(/ n”ﬁ,‘i}ﬁzx)x

Note £(K) — 0 as K — +oo since ¢ € L"/2(By). Hence for bounded B we
obtain by choosing large K = K(B)

1/
(/ nsz—t’;ixb—ﬂx) * <c(+ 5){ /(|Dn|2 + )b % + / |f|7lzﬁgﬂ}-

Observe
__B_ 8 +1
B _ Poprm_1+Es B2\
ubit <y, "7u TER = (uhu’) .

=)

Therefore by the Holder inequality again we have for n <1

1 B+1
—R — q A (B+2)x _1_ B+1
/ |f|n2uiuf( / Ifl") ( / (nzuff,uZ)X) jsupp o143

2 o
provided
1 1 -2
1——-— 'B; >0 whichisequivalentto S +2 < M

qg B+2)x "~ ~ n-—2gq
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Hence f is required to be bounded, depending only on  and ¢g. Then we obtain

1/x
—By— —B — 2
([ eatzaen) ™ < cf [aonp + g + 1715,
By setting y = B + 2, we have by definition of ¢*
-2 *
(4.5) 1<y<L=D _&
n—2q X

We conclude, as before, for any such y in (4.5) andany 0 <r < R <1

46 |l <C 1Tl sy + ||f||Lq(Bl>}

1
[Tt
provided ||L7||Ly(BR) < 400. Again this suggests the iteration 2,2y,2x2, . ...

For given ¢ € [-22 w43 2)» there exists a positive integer k such that

_1<M<

2051 < 2x%.
n—2q

Hence for such k we get by finitely many iterations of (4.6)

20 2k (4 = CUlElL208y) + 1 ILa(B)

in particular,
IIEIILQ(B = CillullLzcpyy + 11/ 1Lacayy5s

3/4

while with y = ¢*/ y in (4.6) we obtain

||L_‘||Lq*(31/2) = C{||17||LCI*/X(B3/4) + ”f”Lq(Bl)}-
This finishes the proof. O

4.3. Holder Continuity
We first discuss homogeneous equations with no lower-order terms. Consider
Lu = —Dj(a;j(x)Dju) in B1(0) C R"

where a;; € L°°(B)) satisfies

ME? < aij(x)EE < AlE]*> forall x € By(0) and £ € R”
for some positive constants A and A.
DEFINITION 4.5 The function u € HléC(Bl) is called a subsolution (supersolu-
tion) of the equation Lu = 0 if

/a,-le-uDj<p <0 (=0) forallgp e HOI(Bl) and ¢ > 0.

By

LEMMA 4.6 Let ® € Clgc (R) be convex. Then:

(1) If u is a subsolution and ® > 0, then v = ®(u) is also a subsolution
provided v € 10C(Bl)
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(ii) If u is a supersolution and ® < 0, then v = ®(u) is a subsolution
provided v € HléC(Bl).

REMARK 4.7. If u is a subsolution, then (x — k) is also a subsolution, where
(u — k)t = max{0,u — k}. In this case ®(s) = (s — k) ™.

PROOF: We prove by direct computation.
(i) Assume first d € CI%)C(R). Then

(s) >0, @"(s)>0.

Consider ¢ € CO1 (B1) with ¢ > 0. Direct calculation yields

/aijDiijgo = /aidi’(u)Diungo

Bl Bl
= /a,-jD,-uDj(CID/(u)(p) —/(a,-jD,-uDju)(pdb”(u) <0,
B] Bl

where ®'(u)p € HO1 (B1) is nonnegative. In general, set (s) = pg *
®(s) with p, as the standard mollifier. Then ®,(s) = pe * ®'(s) > 0
and @/ (s) > 0. Hence ®.(u) is a subsolution by what we just proved.
Note ®.(s) — @'(s) a.e. as ¢ — 07. Hence the Lebesgue dominant
covergence theorem implies the result.

(i1) This is proved similarly. O

We need the following Poincaré-Sobolev inequality:

LEMMA 4.8 For any € > 0 there exists a C = C(g,n) such that foru € H'(By)
with
l{x € By;u = 0} > ¢|By1| there holds /uz <C / |Du|?.

B, B,

PROOF: Suppose not. Then there exists a sequence {1,,} C H(B;) such that

l{x € Biium = 0}] > ¢|By], /u,znzl, /|Dum|2—>0 as m — oo.
B B,

Hence we may assume u,, — ug € H'(B;) strongly in L?(B1) and weakly in
H'(By). Clearly ug is a nonzero constant. So

0= lim /|um—uo|2 > lim |um — uo|?
m—00 m—0oQ
B {um=0}

> Juol? inf [{um = 0} > 0.
m

Contradiction. |
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THEOREM 4.9 (Density Theorem) Suppose u is a positive supersolution in By
with

[{x € By :u > 1}| > | By|.
Then there exists a constant C depending only on ¢, n, and A /A such that

inf u>C.
By,

PROOF: We may assume that ¥ > § > 0. Then let § — 0+. By Lemma 4.6,
v = (logu)~ is a subsolution, bounded by log §~!. Then Theorem 4.1 yields

1/2
suvaC(/|v|2) .
Bi,>

B,
Note |[{x € By : v =0} = [{x € By : u > 1}| > ¢|B1|. Lemma 4.8 implies

1/2
4.7) supfo(/|Dv|2) .
Bi,» 2,
We will prove that the right-hand side is bounded. To this end, set ¢ = Zu_z for

l e CO1 (B2) as the text function. Then we obtain

0= /aijDiMDj(ﬁ) = _/;2w +2/ faijDi”Djf’
u u u
which implies
/§2|Dlogu|2 5C/|D§|2.
So for fixed § € Col (B2) with ¢ = 1 in By we have

/ |Dlogu|? < C.
B,
Combining this with (4.7) we obtain
sup v = sup (logu)~ < C which gives inf u > e € >o.
Bi,2 Bi,2 Bi/2
O

THEOREM 4.10 (Oscillation Theorem) Suppose that u is a bounded solution of
Lu = 0in By. Then there existsay = y(n, %) € (0, 1) such that

0SCB, ,, U < Y 0SCB, U.
PROOF: In fact, local boundedness is proved in the previous section. Set

oy =supu and B; =infu.
B B

Consider the solution
u— B o1 — U
or .
ar — B ar — B
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Note the following equivalence:

1 u —,31 1
> — — > —
uz g+ p) = gz
1 o] —Uu 1
<= — > .
u = (e +p1) o B =2
CASE 1. Suppose that
2(u — 1
{x cp, =P 1} > gy,
o1 —ﬂl 2
Apply the above theorem to ’gﬂll > 0 in B;. We have for some C > 1

inf X PL o L
Bipar—p1 ~ C’
which results in the following estimate:
inf u > f; + —(Oll B1)-
Bi,2
CASE 2. Suppose
2(a1 — u) }

— .

{X € By :
Similarly as in Case 1 we obtain

1
sup u < a1 — —(041 B1).
B2

Now set

ar = supu and P = inf wu.
Bi,2 Bi/2

Note 82 > B1 and o < 1. In both cases, we have

o — P2 < (1 - %)(al - B1).

The De Giorgi theorem is an easy consequence of the above results.

THEOREM 4.11 (De Giorgi) Suppose Lu = 0 weakly in By. Then there holds

|u(x) —u(y)| A
sup [u(x)| +  sup  —————— <c|n,— |llulL2as)
B> X,YE€EB1/2 |X - yl A

witha = a(n, %) € (0,1).

In the rest of the section we will discuss the Holder continuity of solutions to
general linear equations. We need the following lemma:
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LEMMA 4.12 Suppose that a;; € L°°(B;) satisfies
Mg < aij(x)&&; < AEI> forany x € By, § €R”,
for some 0 < A < A < +oo. Suppose u € H'(B,) satisfies
/aijDiuDjw =0 foranygp € HOI(Br).
B,
Then there exists an . € (0, 1) such that for any p < r there holds

0 n—2+2«a
/|Du|2 < c(—) f|Du|2
r
B, B,

A
where C and o depend only on n and ;.

PROOF: By dilation, consider r = 1. We restrict our consideration to the
range p € (0, %], since it is trivial for p € (%, 1]. We may further assume that
/] g, ¥ = 0 since the function u — |By|~! / B, U solves the same equation. The

Poincaré inequality yields
/u2 fc(n)/|Du|2.
B

B,

Hence Theorem 4.11 implies for |x| < %

() — u(O)P < C|x|2“/|Du|2
B,

where o € (0, 1) is determined in Theorem 4.11. For any 0 < p < % take a cutoff
function §{ € C3°(B2p) with{ = 1in Bpand 0 < p < 1 and |D{| < %. Then set
¢ = 2(u — u(0)). Hence the equation yields

0= /aUDiu(CZD;u + 20D, (u —u(0)))

B
A
=5 [ @1pul - sl -u P [ 105
B>,
B>, B>,

Therefore we have
/ |Du|? < Cp" 2 sup |u — u(0)|?.
B Bae
0
The conclusion follows easily. (Il

Now we may prove the following result in the same way we proved Theo-
rem 3.8, with Lemma 3.10 replaced by Lemma 4.12.
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THEOREM 4.13 Assume a;j € L°°(B1) and ¢ € L"(By) satisfies
MEP < aij(x)€i&; < AEI> forany x € By, £ € R,

for some 0 < A < A < +o0. Suppose that u € H'(B)) satisfies

/aiijuDigo + cug =/fg0 forany ¢ € HOI(Bl).
Bl Bl

If f € LY(By) for some q > %, thenu € C*(By) for some a = a(n,q,A, A,

llcllzn) € (0,1). Moreover, there exists Ry = Ro(q, A, A, ||c||Ln) such that for
any x € By, andr < Ry there holds

[ 1Dul = e R By + Tl
By (x)

where C = C(n,q, A, A, ||c||Ln) is a positive constant.

4.4. Moser’s Harnack Inequality

In this section we only discuss equations without lower-order terms. Suppose
2 is a domain in R”. We always assume that a;; € L°°(£2) satisfies

ME? < ai;(x)EE; < AE[* forall x € Q and £ € R”
for some positive constants A and A.

THEOREM 4.14 (Local Boundedness) Letu € H(2) be a nonnegative subsolu-
tion in 2 in the following sense:

/aijDiuDJ-(pf/fgo foranyqoeHOl(Q)andgszinQ.
Q Q

Suppose f € L9(Q) for some q > 5. Then there holds for any B C R, any
O<r <R andany p >0

supu < C [t Loy + RZ 41 f llLaBR)

B, { (R —r)n/p
where C = C(n, A, A, p,q) is a positive constant.
PROOF: This is a special case of Theorem 4.1 in the dilated version. O

THEOREM 4.15 (Weak Harnack Inequality) Let u € H'(Q) be a nonnegative
supersolution in 2 in the following sense:

(%) /aijDiuDj(pZ/f(p forany(peHol(Q)and(pZOinQ.
Q Q
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Suppose f € L9(Q) for some q > 5. Then for any Br C Q there holds for any
0<p<sandany0 <6 <t <1

1
n 1 P
. 21 1 p
v an (i f )
B‘rR
where C depends only onn, p, q, A, A, 8, and t.

PROOF: We prove for R = 1.

Step 1. We prove that the result holds for some pg > 0.

Set# = u + k > 0 for some k > 0 to be determined and v = #~!. First we
will derive the equation for v. For any ¢ € HO1 (B1) with ¢ > 0 in B consider
ﬁ_zgo as the test function in (x). We have

D
/a,]Du uﬂﬁ 2/a,jDuD u—>/f_2.

Bl Bl
Note D% = Du and Dv = —u?2 Du. Therefore we obtain
/aiijUDi§0 + fup <0 whereweset f = é
u
By

In other words, v is a nonnegative subsolution to some homogeneous equation.
Choose k = | f||r« if f is not identically 0. Otherwise choose arbitrary k > 0
and then let k — 0. Note

I/ llLasyy = 1.
Thus Theorem 4.1 implies that for any 7 € (6, 1) and any p > 0

supu P < C/L_l_p,
Bg 2
T

weeclfrre) el ) ([7)

T

that is,

=

where C = C(n,q, p,A, A, 1,0) > 0.
The key point is to show that there exists a pg > 0 such that

/ﬁ‘po-/ﬁpo <C(n,q, A, A, 7).

We will show that for any t < 1 there holds

(4.8) /ep0|w| <C(n,q, A, A7)
B

where w = logt — B with B = |B;|™! /3, logi.
We have two methods:
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(1) Prove directly.
(2) Prove that w € BMO, that is, for any B, (y) C B1(0)

1
r7f|w —wy,ldx < C.
B,
Then (4.8) follows from Theorem 3.5 (John-Nirenberg lemma).
We shall prove (4.8) directly first. Recall u = u + k > k > 0. Note that

2 n
w w
ePolwl :1+p0|w|+w_i_...+%+...

Hence we need to estimate | B, |w|? for each positive integer f.

We first derive the equation for w. Consider i~ 1y as test function in (x). Here
weneed ¢ € L*°(B1) N HO1 (B1) with ¢ > 0. By direct calculation as before and
by the fact that Dw = u~! Dz, we have

(4.9) /aijDiijw(p < /al’jDiij(p—f—/(—ng)
B B B

forany ¢ € L°°(B1)N HO1 (B1) with ¢ > 0. Replace ¢ by ¢Z in (4.9). The Holder
inequality implies

/|Dw|2<o2 sc{/|Dw|2+/|f|¢2}.
B B B

By the Holder and Sobolev inequalities we obtain

/Ifl(p2 <1 f ln2l@ll3 20 /-2y < c(n, )| D@|7 .
By
Therefore we have

(4.10) /|Dw|2<p2 < C/|D<ﬂ|2
Bl Bl

with C = C(n,q,A,A) > 0. Take ¢ € C}(By) with ¢ = 1 in B;. Then we
obtain
(“.11) [ 1wp < cwgan0.
B
Hence the Poincaré inequality implies

/w2 sc(n,r)/lDwIZ < Cn.g. 0 A7)
B: B:

since f B, W= 0. Furthermore, we conclude from (4.10)

4.12) / w2 <Cn,q, A A, 1,7
B,/
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forany ' € (z, 1).
Next we will estimate fBr |w|® for any B > 2. Choose ¢ = C2|w,|? €
Hg (B1) N L®(By) with

-m, w<-m,
Wy, = Jw, |lw| < m,

m, w > m.

Substitute such ¢ in (4.9) to get

[ EumPay Dwdw < @8) [ aiy DiwD; w5
Bl Bl
+ [ 2thwnPPay Diwyt + [ 1716 wm P
B] Bl
Notea;j DiwDj|wm| = aij DiwmDj|wm| < a;jj Diwm Djwy, a.e.in By. Young’s
inequality implies
28 —1 1
D) 26—1 _ 28 L 1 (2B)2B
CAwml ™ = T um PP+ 2 0f)

- (1 - %)mmﬁﬁ + (2B

Hence we obtain
1
/§2|wm|zﬂaijDiijw =< (1 - %)/€2|wm|2ﬂaijDimejwm
B

B,

+(2p)F / a1 Diwm D, wm
B

+ [ 2tlumPay Dywd;t + [ 1716w
B] Bl
and hence

/§2|wm|2’3a,~jD,~ijw
B,

< (2ﬂ)2B/CZaijDimejwm
B

+(4ﬁ)/z|wm|2ﬂa,~j0iw0,r+2ﬁ/|f|c2|wm|2ﬂ.
B1 Bl
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Therefore we obtain
/c2|wm|2ﬂ|Dw|2 <
B _
c{<2ﬁ>2ﬂ/zz|Dwm|2+ﬂ/¢|wm|2ﬂ|Dw||Dz| +ﬁ/|f|¢2|wm|2f’}.
B B B

Note that the first term in the right side is bounded in (4.11). Applying the Cauchy
inequality to the second term in the right side we conclude

/¢2|wm|25|Dw|2 <
B,

clep?® [ 1Dun + 82 [ lunPP D52 + 6 [ 171n??.
B B B,
Note Dw = Dwy, for |w| < m and Dw,, = 0 for |[w| > m. Hence we have

[c2|wm|2ﬂ|0wm|2 <

B _
cles?® [ 210wnl + 52 [ lunP?10¢2 + 6 [ 1716002}
B B B
In the following, we write w = wy,, and then let m — +o00. By Young’s

inequality we obtain

IDE|w|P)? < 2|D¢Pwl*P + 2822 |w P72 Dw ?

< 2D¢Plul? + 27 Dup(Etjup? + 5%

and hence

/|D<z|w|ﬁ)|2 sc{(zﬂ)zﬂfczwwﬁ
B] Bl

+ 8 [ Dt + 5 [ 17,
B
The Holder inequality implies

[ 17t < (/ifi‘I)é(/(awW)fT"l)l_é
B, 4 g

By the interpolation and Sobolev inequalities with 2* = ,,2Tn2 > Z_ql >2ifg > 2,

=
we have
11wl 20 < elghwl?llLex + Corgre™ 2 ¢ lwl 2

n

< e DEw[P)| L2 + Cn,q)e” a7 ||¢|w|?| 2
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for any small € > 0. Therefore we obtain by (4.10)
[1pcult)e < clepi? [pup e [(De? + cpup?]
B B B

- c{(zmzﬂf|D§|2+ﬂ“/(|D§|2+§2)|w|2ﬂ}
B B,

for some positive constant o depending only on n and g. Apply the Sobolev in-
equality for ¢|w|? WOI’Z(R”) with y = -5 to get

1/x
(/zzﬂwﬁﬁX) <Cﬂ“{(2ﬂ)2ﬂ[|0§|2 [(|D§|2+c2)|w|2ﬂ}

By B,

Choose the cutoff function as follows: Fort < r < R < I,set{ = 1 on
B,(0),{ = 0in B1(0) \ Bg(0), and | D¢| < %% . Therefore we have

1/ a
(frwroe) ™ = G lop« [
B, Br

-1

Forsome v’ € (7,1)setB; = y' Landr, = v+ (t/—t)foranyi =1,2,....

Then foreachi =1,2, ...,

1/x C yi—Dan2(i-1) .
| X i—1 i—1
([ ) < L gt [ )

By, Bri_,

1
2i—1

Set
I = ||lw j .
J ” ||L2Xf (Br_,-)
Then we have for j = 1,2,...,
I} < CoT 27V 4 [y}
with C = C(n,q,A, A, t,7") > 0. Iterating the above inequality and observing
that
o .
> <
Zo X
we obtain
j . .
I; <CY ¥ 4 Cly. thatis, I; <Cy/ + Clo.
i=1

Now for B > 2 there exists a j such that 2y/~! < B < 2y/. Hence

1/8 |
1 = ([10l?) =ty = Cxl +Cho = Cpt Cho < Cop.
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since I is bounded in (4.12). Hence we obtain for § > 1
/ w|Pdx < clpP < clelp
B
where we used the Sterling formula for integer 8. Hence for integer § > 1

(polw])”

polwD” _ g g L
B < po (Coe) =35

B

by choosing pg = (2Cge)~!. This proves that

2
jwl _ (Polwh” . LI
/epow—/1+p0|w|+ T sltgtp+to=2

REMARK 4.16. The above method, avoiding BMO, is elementary in nature.

Now we give the second proof of estimate (4.8). Estimate (4.10) gives
[1puPe <c [1peP torany ¢ € i),
Bl Bl

Then for any B>, (y) C Bj choose { with

. 2
supp{ C Bar(y), ¢ =11inB,(y), [|D{| =< t
Then we obtain

|Dw|? < Cr*2.

B (y)
Hence the Poincaré inequality implies

1 1 \?
o lw —wy,r| < a2 lw — wy,r|

B, (y) B, (y)

| 1/2
r

B, (y)
that is, w € BMO. Then the John-Nirenberg lemma implies

/epo|w| <C.

B
Step 2. The result holds for any positive p < %5.

IA

We need to prove forany 0 < r; < rp < land 0 < py < p; < ;75 there
holds

(4.13) (/ ﬁpl)p_l < C(/ 7,7”2)5

Brl )

89
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for some C = C(n,q,A,A,r1,r2, p1, p2) > 0. A similar calculation may be
found in Section 4.2 (Method 2). Here we just point out some key steps.
Take ¢ = A n? for B € (0, 1) as the test function in (x). Then we have

1 1
/|Dﬁ|zﬁ—f’—1n2 < c{ﬁfwm%?l—ﬂ + E/'Z—'nzal—ﬂ}.
B, B, B,
Sety =1—f € (0,1) and w = ?/2. Then we have

C
/|Dw|2n2 = W/wz(anlz +7°)
or
[ 10w = = [w2paP + )
=y
for some positive « > 0. The Sobolev embedding theorem and an appropriate
choice for the cutoff function imply, with y = -%5, that forany 0 <r < R < 1

(/wzx)i = —Cy)“ ' (R—1r>2 / v

B, Br
or
L \E C L \Y([_\7
(/ ””) = ((l—y)a (R_,)z) (/ ”y) ‘
B, Bgr

This holds for any y € (0,1). Now (4.13) follows after finitely many iterations.
O

Now the Harnack inequality is an easy consequence of the above results.

THEOREM 4.17 (Moser’s Harnack Inequality) Let u € H'(Q) be a nonnegative
solution in 2

/aijDiuDj(p :/ﬂp forany ¢ € HOI(Q).
Q Q

Suppose f € L1(Q2) for some q > 5. Then there holds for any BR C Q

maxu < C{ min u + R* 7| f | oz}
Br Br/2

where C = C(n, A, A, q) is a positive constant.
COROLLARY 4.18 (Holder Continuity) Letu € H' () be a solution in Q

/aijDiuDj(p :/ﬂp forany ¢ € HOI(Q).
Q Q
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Suppose [ € L4(2) for some q > 5. Then u € C%(Q) for some a € (0,1)
depending only onn, q, A, and A. Moreover, there holds for any Br C Q

_ o 1/2 .
e —ul = (P2 ) (G [0) 4 R e

Br

forany x,y € Br/, where C = C(n, A, A, q) is a positive constant.

PROOF: We prove the estimate for R = 1. Let M(r) = maxp, u and m(r) =
ming, u for r € (0,1). Then M(r) < 400 and m(r) > —oo. It suffices to show
that

w(r) £ M(r)—m(r) < Cra{(/ u2)1/2 + | flleae,y¢ foranyr < %
B,
Seté =2 — %. Apply Theorem 4.17 to M(r) —u > 0 in B, to get
sop (M) =) = C{ jnf (M) =)+ Tacap}
that is,

(4.14) M(r) —m(%) < C{(M(r) _ M(%)) n r3||f||Lq(B,)}.

Similarly, apply Harnack to u — m(r) > 0 in B, to get

(4.15) M(%) —m(r) < C{(m(%) - m(r)) 4 r8||f||Lq(Br)}.

Then by adding (4.14) and (4.15) together we get

w(r) + a)(%) < C{(a)(r) - a)(%)) + r8||f||L‘1(Br)}

,
o(5) = v+ €1 lueim

or

for some y = g—_;ll < 1.

Apply Lemma 4.19 below with p chosen such that e = (1 — ) logy/logt <
3. We obtain

1
w(p) < Cp“{w(i) i ||f||Lq(Bl>} for any p € (0. 1],

While Theorem 4.14 implies

a)(%) < C{(B/ uz)l/z + ||f||Lq(Bl)}-

1
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LEMMA 4.19 Let w and o be nondecreasing functions in an interval (0, R]. Sup-
pose there holds for allr < R

w(tr) < yo(r) +o(r)

forsome O < y,t < 1. Then forany i € (0,1) and r < R we have

o
w(r) < C{(%) o(R) + o(r'*R™H)
where C = C(y,t) and o = a(y, t, ) are positive constants. In fact, @ =
(1 —pu)logy/logrt.
PROOF: Fix some number r; < R. Then for any r < r; we have
w(tr) < yo(r) + o(ry)

since o is nondecreasing. We now iterate this inequality to get for any positive
integer k

k—1

o r) = yro(r) + o) Yy < vio(R) + 5
i=0

o(r1)
V

For any r < r; we choose k in such a way that
fkrl <r < tk_lrl.

Hence we have

o) < o) < <R + T o y(_)mwm”

Now let r; = r* R1=%*. We obtain

logy
1 (=) fog 7 wR1—k
w(r) < —(L) ‘ o(R) + M.
Yy \R l—y

This finishes the proof. O
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COROLLARY 4.20 (Liouville Theorem) Suppose u is a solution to a homogeneous
equation in R"
/a,-jD,-uDj(p =0 forany g € Hy (R").
R
If u is bounded, then u is a constant.
PROOF: We showed that there exists a y < 1 such that
o(r) < yoQ2r).
By iteration we have
w(r) < ykw(2kr) —0 ask —> o0

since w(2¥r) < C if u is bounded. Hence for any r > 0, w(r) = 0. U

4.5. Nonlinear Equations

Up to now, we have been discussing linear equations of the form
—Dj(a;j(x)Dju) = f(x) in By.

It is natural to ask how they generalize to nonlinear equations. To answer this
question, let us consider the equation for a solution v with the form

v(x) = @(u(x))

for some smooth function ® : R — R with ® # 0. Any estimates for u can be
translated to those for v. To find the equation for v, we write

u = w()
with W = ®~!. Then by setting n = W/(v)£ for § € Cs°(B1) we have

/a,-jD,-uDjE = /a,-j\l/(v)D,-ijé
_ . D \IJN(U)
= [ aijDijvD;jn — \p/—@)aijDiijvn'

Therefore, if u is a solution

/aijD,-uDjé = /f(x)g for any £ € H} (B1),

then v satisfies

W’ (v) 1
/a,'jDiijn = /(‘IV—(U) aijDivDjv + \Iﬂ—(y)f)n for any n € Cg§°(B1).
Note that the nonlinear term has quadratic growth in terms of Dv. Hence we
may extend the space of test functions to HO1 (B1) N L°°(By). It turns out that
H'(By)N L*(B) is also the right space for the solution. The following example
illustrates that the boundedness of solutions is essential:
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EXAMPLE. Consider the equation —Au = |Du|? in the ball Bg(0) in R? with
R < 1. Itis easy to check that u(x) = loglog |x|~! —loglog R~! € H'(Bg(0))
is a weak solution with zero boundary data. Note that u(x) = 0 is also a solution.

In this section we always assume a;; € L°°(B1) satisfies
MEP? < aij(x)&& < AlE|* forany x € By, £ € R",

for some positive constants A and A. We consider the nonlinear equation of the
form

(%) /aij(x)DiuDj(p = /b(x,u, Du)g forany ¢ € H}(B1) N L% (By).

We say the nonlinear term b satisfies the natural growth condition if
|b(x, u, p)| < C)(f(x) +|p|*) forany (x,u, p) € By xR xR"

for some constant C(u) depending only on u and f € L4(B;) for some g > ’12%

We always assume
u € H'(B;) N L®(By).

LEMMA 4.21 Supposeu € H(B}) is a nonnegative solution of () with [u| < M
in By and that b satisfies the natural growth condition with f(x) € L4(By) for
some q > %. Then for any Bgr C By there holds

1
sup u SC{ inf u—i—Rz_g(/ |f|q)q}
Br/>2 Br/2

Br

where C is a positive constant depending only onn, A, A, M, and q.

PROOF: Letv = é(e“”—l) for some @ > 0. Then for ¢ € HOI(Bl)OLOO(Bl)
with ¢ > 0 there holds

/aijDiij(p = /aije““Diuchp
= /al—jDiuDj(e““go)—a[aije““DiuDjuw
= /b(x,u,Du)e““go—a/aije“”DiuDjmﬂ
= €M) [(100)+ IDul)ep —ar [ 1Dup ey,

Hence by taking « large we have

/Cll‘le‘UDj(p < C/f(x)@
for any ¢ € Hy (B1) N L™ (B;) with g > 0

(4.16)
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for some positive constant C depending only on n, A, A, and M. Observe that u
and v are compatible. Therefore by Theorem 4.14 we obtain for any p > 0

1

1
1 P n q
sup u < C(M,a) sup v < C%(—n / vl’)p + RZ—a(/ fq)q}
BR/2 BR/2 R
R Br
1 1
o
= R
BR BR

R VRN

For the lower bound, we let w = %(1 —e~ %), As before, by choosing & > 0 large
we have

/a,-jD,-ijqo >C / f(x)p foranyg € Hol(Bl) N L°°(By) with ¢ > 0.

Hence by Theorem 4.15, we obtain for any p € (0, .%5)

LroNE
= u <C Blg;fzu + R« f .
BR Br

Combining the above inequalities we prove Lemma 4.21. O

REMARK 4.22. In estimate (4.16) in the above proof, take ¢ = (u + M)n?
for some 71 € CO1 (B1). Then by the Holder inequality we conclude

[ 1pu < c{/(|Dn|2+ |f|n2>}

for some positive constant C depending only on n, A, A, and M. This implies
the interior L?-estimate of gradient Du in terms of these constants together with
/1 (B,)- This fact will be used in the proof of Theorem 4.24.

COROLLARY 4.23 Suppose u € H'(By) is a bounded solution of (x) and that b
satisfies the natural growth condition with f(x) € L9(By) for some q > 5. Then
ueC (By)witha =a(n,A,A,q,|u|L=). Moreover, there holds

loc
lu(x) —u(y)| = Clx —y|* foranyx.y € By
where C is a positive constant depending only on n, A, A, q, |u|peo(p,), and
I/ lLa(B))-

PROOF: The proof is identical to that of Corollary 4.18 with Theorem 4.17
replaced by Lemma 4.21. O

THEOREM 4.24 Suppose u € H'(By) is a bounded solution of (x) and that b
satisfies the natural growth condition with f € L9(B1) for some g > n. Assume
further that a;; € C¥*(By) fora =1 — g. Then Du € CZ.(B1). Moreover, there
holds

|Dulca(p, ) < Cn, A, A, q,|ulpeoy, | flLasy))-
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PROOF: We only need to prove Du € L. Then the Holder continuity is
implied by Theorem 3.13. For any B (xp) C B; solve for w such that

/ aij(xo)DijwDjp =0 forany ¢ € HO1 (Br(x0))
By (x0)
withw —u € HO1 (Br(x0)). Then the maximum principle implies

inf u<w< sup u in By(xp)

By (x0) By (x0)
or
(4.17) sup |u — w| < 0SCR, (xo) U-
By (x0)

By Lemma 3.10, we have forany 0 < p <,

(4.18) / |Du|2§c{(§)n / \Dul? + / |D(u—w)|2}

By (x0) By (x0) By (x0)

and

(4.19) / |Du — (D) xo.p|* <

B, (x0) n
c{(ﬁ) " / |Du —(Du)xO,r|2 + / |D(u—w)|2}.
r

By (x0) By (x0)

Note that the functionv = u —w € HO1 (Br(x0)) satisfies

/ aij(xo)DjvD;p = / b(x,u, Du)g
By (xo) By (x0)
+ / (aij (x0) — aij(x)) DiuD;¢,
By (x0)
¢ € Hy (By(x0)) N L(By(x0)).

Taking ¢ = v and using the Sobolev inequality we obtain
[RLE c{ [ ipupii s [ pu + r”““llflliq(gl)}-

By (x0) By (x0) By (x0)

Hence with (4.17) we conclude

(4.20) / |Dv|? < c{(ﬂ“ + 0SCB, (xo) U) / |Du|? + r"+2“||f||iq}.
B, (x0) B, (x0)
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Corollary 4.2 implies u € C% for some 8 > 0. Therefore we have by (4.18) and
(4.20)

n
f |Du|2§C%|:(§) +r2“+r8°:| / |Du|2+r"+2“||f||gq}.

Bp (x0) B/ (x0)

By Lemma 3.4 we obtain that for any § < 1 there holds for any B, (xo) C B7/s
[ 1 < Cr"—“”{ [ 1pu+ ||f||iq(31)}-

By (x0) B3
This implies u € Cl‘ic forany § < 1. Moreover, for any B, (xo) C B3/4 there holds
OSCB, (xo) U = Crb

where C is some positive constant depending only on n, A, A, ¢, [u|poo(p,), and
| flLa(B,)> by Remark 4.22. With (4.20) we have for any B,(x9) C B,/3

/ |DU|2 < C{(}"za + r8)rn—2+25 / |DM|2 T rn+2a||f||1%q}
By (x0) B7/s
< Crn-l—Za’

for some o' < « if § € (0, 1) is chosen such that 36 > 2 and « + § > 1. Hence
with (4.19) we obtain for any B, (xg) C B% andany0 < p <r

n+2
/ | Du — (Du)xy,pl* < C{(ﬁ) / |Du — (D) xo.r | + r"+2“’},

r
B, (x0) By (xo0)

By Lemma 3.4 and Theorem 3.1 we again conclude that Du € Cl‘(’)‘; for some
o' < a, in particular Du € L{°. This finishes the proof. ]
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CHAPTER 5

Viscosity Solutions

5.1. Guide

In this chapter we generalize the notion of classical solutions to viscosity solu-
tions and study their regularities. We define viscosity solutions by comparing them
with quadratic polynomials and thus remove the requirement that solutions be at
least C2. The main tool for studying viscosity solutions is the maximum principle
due to Alexandroff. We first generalize such maximum principles to viscosity so-
lutions and then use the resulting estimate to discuss the regularity theory. We use
it to control the distribution functions of solutions and obtain the Harnack inequal-
ity, and hence C* regularity, which generalizes a result by Krylov and Safonov.
We also use it to approximate solutions in L°° by quadratic polynomials and get
Schauder (C?%)-estimates. The methods are basically nonlinear in the sense that
they do not rely on differentiating equations. This implies that the results obtained
in this way may apply to general fully nonlinear equations, although in this chapter
we focus only on linear equations.

Here we only try to explain a few basic ideas in obtaining estimates for viscos-
ity solutions. Students should read the book [4] for further developments.

5.2. Alexandroff Maximum Principle

We begin this section with the definition of viscosity solutions. This very weak
concept of solutions enables us to define a class of functions containing all classical
solutions of linear and nonlinear elliptic equations with fixed ellipticity constants
and bounded measurable coefficients.

Suppose that €2 is a bounded and connected domain in R” and that a;; € C(£2)
satisfies

AlE? <a;j(x)§§; < A|€]*> forany x € Q and any £ € R”
for some positive constants A and A. Consider the operator L in 2 defined by
Lu =a;j(x)D;ju foru e C?(Q).

Suppose u € C2(R) is a supersolution in €, that is, Lu < 0. Then for any
¢ € C?(Q) with Ly > 0 we have

Lu—¢) <0 inQ.

This implies by the maximum principle that ¥ — ¢ cannot have local interior mini-
mums in . In other words if u — ¢ has a local minimum at x¢ € €2, there holds

Lo(xo) < 0.

99
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Geometrically ¥ — ¢ having a local minimum at xo means that ¢ touches u from
below at x¢ if we adjust ¢ appropriately by adding a constant. This suggests the
following definition. We assume f € C(S2).

DEFINITION 5.1 u € C(£2) is a viscosity supersolution (respectively, subsolution)
of

Lu=f inQ

if for any xo € Q and any function ¢ € C?(2) such that u—¢ has a local minimum
(respectively, maximum) at xo there holds

Lo(xo) = f(xo) (respectively, Lp(xo) = f(xo)).
We say that u is a viscosity solution if it is a viscosity subsolution and a vis-

cosity supersolution.

REMARK 5.2. By approximation we may replace the C 2-function ¢ by a qua-
dratic polynomial Q.

REMARK 5.3. The above analysis shows that a classical supersolution is a
viscosity supersolution. It is straightforward to prove that a C? viscosity super-
solution is a classical supersolution. Similar statements hold for subsolutions and
solutions.

REMARK 5.4. The notion of viscosity solutions can be generalized to nonlin-
ear equations accordingly.

Now we define in a weak way the class of “all solutions to all elliptic equa-
tions.” For any function ¢ that is C? at x¢, we have the following equivalence:

n
> aij(x0) Dijp(x0) < 0
i,j=1

n
— Zakek <0 withA <o <A, ex = ex(D?¢(x0))

k=1
<= Zaiei+ Zaie,- <0

e;>0 e; <0
= D aiei < Y ai(—e),
e;>0 e; <0
which implies
AD e <A (—e)
e;>0 e; <0
where e1, ..., e, are eigenvalues of the Hessian matrix D2<p(x0). This means that

positive eigenvalues of D2¢(xo) are controlled by negative eigenvalues.

DEFINITION 5.5 Suppose f is a continuous function in 2 and that A and A are two
positive constants. We define u € C(Q) to belong to ST(A, A, f) (respectively,
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ST(A, A, f)) if for any xo € Q and any function ¢ € C?(Q) such that u — ¢ has
a local minimum (respectively, maximum) at xo there holds

A Z ei(x0) + A Z ei(x0) < f(xo)

e; >0 e; <0
(respectively, A Z ei(xo) + A Z ei(xo) > f(xo))
e;>0 e; <0

where e1(xg), . .., en(xo) are eigenvalues of the Hessian matrix D2¢(xo).

We denote S(A, A, ) = ST(A, A, f) NS (A, A, f).
REMARK 5.6. Any viscosity supersolutions of
aijDiju = f inQ
belong to the class ST(A, A, f) where there holds
AME? < a;;(x)EE < AJE|*> forany x € Q and any & € R”.

The class ST(A, A, f) and S™(A, A, f) also include solutions to fully non-
linear equations. Among them are the Pucci equations.

EXAMPLE. For any two positive constants A < A let A be a symmetric matrix
whose eigenvalues belong to [, A], that is, A|§]* < A;;&& < A|€]? for any
& € R". Let A) A denote the class of all such matrices. For any symmetric
matrix M we define the Pucci extremal operators

M (M)y=M"(AAM)= inf A;M,;,
AcAp A
MYEM) = MY, A, M) = sup A;;M;;.
A€A) A
Pucci’s equations are given by
M- (LA M)=f MYQA A M) =g,

for continuous functions f and g in Q. It is easy to see that

MTOLAMY=2>ei+A) e

e;>0 e; <0
MY AM)=AD e +1) e
e; >0 e; <0
where e, ..., e, are eigenvalues of M. Therefore u € S +(A, A, f) if and only if

M™(A, A, D?u) < f in the viscosity sense; that is, for any ¢ € C?() such that
u — @ has a local minimum at xo € 2 there holds

M (A, A, D*¢(x0)) < f(xo0).

By the definition of M~ and M it is easy to check that for any two symmetric
matrices M and N

M M)+ M (N) <M (M +N)<M"(M)+ M (N)
<M*t(M + N) < Mt (M) + MT(N).
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This property will be needed in Section 5.4.

Next we derive the Alexandroff maximum principle for viscosity solutions. It
replaces the energy inequality for solutions to equations of divergence forms. Let v
be a continuous function in an open convex set 2. Recall that the convex envelope
of v in Q is defined by

I'(w)(x) = sup{L(x) : L <vin R, L an affine function}
L

for any x € . It is easy to see that I'(v) is a convex function in 2. The set
fv=TWwW)} ={x € Q:v(x)=T()(x)}is called the (lower) contact set of v.
The points in the contact set are called contact points.

The following is the classical version of the Alexandroff maximum princi-
ple. We do not require that functions be solutions to elliptic equations. See
Lemma 2.24.

LEMMA 5.7 Suppose u is a C Y -function in By withu > 0 on dBy. Then there

holds :
supu~ < c(n)( / detDzu)
B,
Bin{u=Iy}
where 'y, is the convex envelope of —u~ = min{u, 0}.

Now we state the viscosity version.

THEOREM 5.8 Suppose u belongs to ST(A, A, f) in By withu > 0 on 0By for
some f € C(R2). Then there holds

1
supu_fc(n,k,A)( / (f+)n)
B BiN{u=Ty}

where 'y, is the convex envelope of —u~ = min{u, 0}.

PROOF: We will prove that I', is a C'>!-function in By and that at contact
point x¢ there hold

(5.1) Sf(x0) =0
and
(5.2) L(x) < Ty(x) < L(x) 4+ C{f(x0) + &(x)}|x — xo/?

for some affine function L and any x close to xo, where e(x) — 0 as x — Xxg
and C is a positive constant depending only on 7, A, and A. We obtain by (5.2)

det DTy, (x) < C(n,)L,A)(f(x))n forae. x € {u = I'y}.

We may apply Lemma 5.7 to function I', to get the result.

Suppose x¢ is a contact point, that is, u(xg) = I'y(xp). We may assume
xo = 0. We also assume, by subtracting a supporting plane at xo = 0, that u > 0
in By and that u(0) = 0.
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In order to prove (5.1) we take h(x) = —e|x|?/2 in By. Obviously u — h has a
minimum at 0. Note that the eigenvalues of D?h(0) are —s, . .., —&. By definition
of ST(A, A, f) we have

—nAe < £(0).
By letting ¢ — 0 we get (5.1).
For estimate (5.2) we will prove

0<Tyu(x)<C, A AN{fO)+ e(x)}x|*> forx e By

where e(x) — 0 as x — 0. By setting w = I';, we need to estimate for any small
r>0

Fix r > 0. By convexity w attains its maximum in B, at some point on the
boundary, say, (0,...,0,r). The set {x € By : w(x) < w(0,...,0,r)} is convex
and contains B;. It follows easily that

wx’,r) = w(,...,0,r) = C,r? foranyx = (x',r) € By.
Take a positive number N to be determined. Set
r =4 x) 1 |X| < N7, |xn| <7}

We will construct a quadratic polynomial that touches u from below in R, and
curves upward very much. Set for some b > 0
h(x) = (xp +1)% = blx'|%.
Then we have
(i) for x, = —r, h <0;
(i) for |x'| = Nr,h < (4 —bN?)r? < 0if we take b = 4/N?;
(iii) for x, =r, h = 4r% — b|x'|?> < 4r2.
Hence if we set
T G Cr 2 42
h(x) = Th(x) =7 (xn +71) —WPC |

we obtain & < w < u on dR, (since w is the convex envelope of u) and h 0) =
C,r?/4 > 0 = w(0) = u(0). By lowering / appropriately we conclude that u — &
has a local minimum somewhere inside R,. Note the eigenvalues of D2/ are given

by C,/2,-2C,/N?,...,—2C,/N?. Hence by definition of ST (X, A, f) we have
C C
)LTT—ZA(n—l)N—r2 fn}sxf.

By choosing N large, depending only on 1, A, and A, we obtain

2 max f.

r

4 4
C, < — < _
,_Arrlléxf or nllga:xw_/\r

Note maxg, f — f(0) as r — 0. This finishes the proof. O
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We end this section with a simple consequence of Calderon-Zygmund decom-
position. We first recall some terminology. Let QO be the unit cube. Cut it equally
into 2" cubes, which we take as the first generation. Do the same cutting for these
small cubes to get the second generation. Continue this process. These cubes (from
all generations) are called dyadic cubes. Any (k 4 1)-generation cube Q comes
from some k-generation cube Q, which is called the predecessor of Q.

LEMMA 5.9 Suppose measurable sets A C B C Q1 have the following proper-
ties:

@) |A| < § for some § € (0, 1);
(ii) for any dyadic cube Q, |A N Q| > 8|Q| implies Q C B for the prede-
cessor Q of Q.
Then there holds |A| < §|B|.

PROOF: Apply Calderon-Zygmund decomposition (Lemma 3.7) to f = x4.
We obtain, by assumption (i), a sequence of dyadic cubes { O/} such that

AC U Qj except for a set of measure 0,
J

J NJ
JM0Q 0D,
|0/ |07

for any predecessor Q~j of Q7. By assumption (ii) we have Qj C B for each j.
Hence we obtain

AcU;0/ cB.
We relabel {Q 71 so that they are nonoverlapping. Therefore we get

Al <) 14N Q[ <8 10" < 5|B|.
i i

5.3. Harnack Inequality

The main result in this section is the following Harnack inequality.

THEOREM 5.10 Suppose u belongs to S(A, A, f) in By withu > 0 in By for
some [ € C(B1). Then there holds

sup u < C{ inf u + || fllzn(B,)}
Bi)» Bi,>

where C is a positive constant depending only on n, A, and A.

The interior Holder continuity of solutions is a direct consequence, whose
proof is identical to that of Corollary 4.18.
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COROLLARY 5.11 Suppose u belongs to S(A, A, f) in By for some f € C(By).
Then u € C*(By) for some o € (0, 1) depending only on n, A, and A. Moreover,
there holds

[u(x) —u(y)| = Clx - yl“{sgplul + 1 fllLn(yy} foranyx.y € By,
1

where C = C(n, A, A) is a positive constant.

For convenience we work in cubes instead of balls. We will prove the following
result.

LEMMA 5.12 Suppose u belongs to S(A, A, f) in Q4 ymwithu = 0in Qg4 s for
some f € C(Qy ﬁ). Then there exist two positive constants gy and C, depending
only onn, A, and A, such that ifinfg, , u < 1 and ||f||Ln(Q4ﬁ) < &g there holds
Supg, ,, U <C.

Theorem 5.10 easily follows from Lemma 5.12. Foru € S(A, A, f)in Q4 s
withu > 0in Q4 /;, consider

ug = u for § > 0.

info, ., u + 8+ oo/ Lnco,
We apply Lemma 5.12 to ug to get, after letting § — 0,

supu <C{ inf u+ || flp» .
sup { dnf Q4m)
Then Theorem 5.10 follows by a standard covering argument.

Now we begin to prove Lemma 5.12. The following result is the key ingredient.
It claims that if the solution is small somewhere in (3 then it is under control in a
good portion of Q1.

LEMMA 5.13 Suppose u belongsto ST (A, A, f)in Bzﬁforsomef € C(Bzﬁ).

Then there exist constants g9 > 0, i € (0,1), and M > 1, depending only on n,
A, and A, such that if

(5.3) u>0in Bzﬁ, 1él3f1nfu <1, ”f”Ln(Bzﬁ) < &9,
there holds
{u < M}N Q01 > p.

PROOF: We will construct a function g, which is very concave outside Q1,
such that if we correct u by g the contact set occurs in Q1. In other words, we
localize where contact occurs by choosing suitable functions.

Note By/4 C Byj2 C Q1 C Q3 C B, s;. Define g in B, /; by

_ |X|2 B
gx)y=—M (1 — E)

for large B > 0 to be determined and some M > 0. We choose M, according to
B, such that

(5.4) g=0 on aBzﬁ and g < -2 in Q3.
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Setw =u + g in B, z;. We will show by choosing B large that

(5.5) weSTA A, f) inB, ;)\ Q1.

Suppose ¢ is a quadratic polynomial with the property that w — ¢ has a local
minimum at xo € B, s;. Thenu — (¢ — g) has a local minimum at xo € B, J

By definitions of ST(A, A, f) and the Pucci extremal operator M~ we have
M™ (A, A, D?¢(x0) — D*g(x0)) < f(xo)
or
M=, A, D¢(x0)) + M™ (X, A, —=D?g(x0)) = f(x0)
where we used the property of M ™. We will choose 8 large such that

M™(A,A,—D?g(x0)) = 0 forany xg € B, /u \ By/4.

We need to calculate the Hessian matrix of g. Note

2\ B—1 2\ B2
Dijg(x) = /3( "") 57— 2 pp - )( 'j,L) ;.

4n (2n)?
If we choose x = (|x[,0,...,0) then the eigenvalues of —D?g(x) are given by
2\ B2 2
—ﬂ _ =1 21)  with multiplicity 1.
An 4n

X2\ P!
- ,B( n ) with multiplicity n — 1.

We choose 8 large such that for |x| > % the first eigenvalue is positive and the

rest negative, denoted by e (x) and e~ (x), respectively. Therefore for |x| > % we
have

M~(A, A, —D?g(x))
= /\e+(x) + (n—1Ae (x)

(o) ()15
20

if we choose B large, depending only on n, A, and A. This finishes the proof of
(5.5). In fact, we obtain

weSTA A, f+n) inB,

forsome n € C§°(Q1) and 0 < n < C(n,A,A).
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We may apply Theorem 5.8 to w in B, ;. Note infg, w < —1 and w > 0 on
0B, N by (5.3) and (5.4). We obtain

1
I < c( [ arn +n)”)
Bzﬁﬂ{w=l“w}
1
< CllfllLn (B, s + Cliw = Tw} N Q7.

Choosing ¢ small enough we get
1 1 1
S = Clw =T} N Q117 = Clfu = M}N Q4]

since w(x) = I'y(x) implies w(x) < 0 and hence u(x) < —g(x) < M. This
finishes the proof. (I

Next we prove the power decay of distribution functions.

LEMMA 5.14 Let u belong to ST(A, A, f) in B, ju for some f € C(Bzﬁ).
Then there exist positive constants &g, €, and C, depending only on n, A, and A,
such that if

(5.6) u=0inB, s, iéleinfu <1, ”f”Ln(Bzﬁ) < g0,
there holds
Ku>t3N Q01| <Ct™ fort>0.
PROOF: We will prove that under assumption (5.6) there holds
(5.7) fu>MFINO | <(1—wk fork=12,...,

where M and p are as in Lemma 5.13.
For k = 1, (5.7) is just Lemma 5.13. Suppose now (5.7) holds for k — 1. Set

A={u>MnQ,, B={u>M"1n0,.
We will use Lemma 5.9 to prove that
(5.8) |A] = (1 = w)|B.
Clearly AC B C Qqand |A| < [{u > M} N Q1| <1 — by Lemma 5.13. We
claim that if Q = Q,(xg) is a cube in Q1 such that
(5.9) AN Q> 0-wlQ|

then Q N Q1 C B for Q = Q3,(x0). B
We prove it by contradiction. Suppose not. We may take X € Q such that
u(X) < M*~1. Consider the transformation

X =Xxg+ry forye Qrandx € Q = Qr(xo)

and the function .
() = g 1),
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Then i > 0in B, s; andinfg, # < 1. Itis easy to check that i € St(A, A, f)in
W with ||]7||Ln(32ﬁ) < gg. In fact, we have
2

f(Y)=W

f(x) foryeB,
and hence

1 F LB, ) < 1 flLn (B, ) < 1 lLnes, s < €o.

r
Mk—1
Hence # satisfies assumption (5.6). We may apply Lemma 5.13 to % to get

i< [{fi(y) < M}N Q1] = r "{u(x) < M*}n Q.

Hence |Q N A°| > p|Q|, which contradicts (5.9). We are in a position to apply
Lemma 5.9 to get (5.8). O

PROOF OF LEMMA 5.12: We prove that there exist two constants 6 > 1 and
My > 1, depending only on n, A, and A, such that if u(x¢) = P > M for some
Xo € Bj4 there exists a sequence {xi } € By, such that

u(xg) > 60KP fork =0,1,....

This contradicts the boundedness of u, hence we conclude that sup By U < M.

Suppose u(xg) = P > My for some xo € Bj/4. We will determine My
and 6 in the process. Consider a cube Q;(xg), centered at x¢ with side length r,
which will be chosen later. We want to find a point x1 € Q, Jar (x0) such that
u(x1) = 6P. To do that we first choose r such that {u > g} covers less than half
of O (xo). This can be done by using the power decay of the distribution function
of u.

Note infg, u < ian1/4 u < 1. Hence Lemma 5.14 implies

P —&
SC(E) .

We choose r such that % > C (g)_e and r < i. Hence we have, for such r,
Qr(x0) C Q1 and

P
{u>3}ﬂQ1

5.10 ;‘ £ N ( <l
10 10, (o) {“> 25 Or(xo) = 3.

Next we show that for & > 1, with 8 — 1 small, ¥ > P at some point in
Q4 ynr (x0). We prove it by contradiction. Suppose u < P in Q, Jar(X0). Con-
sider the transformation

x =xg+ry forye Q, mandx e Q4. /nr (x0)
and the function
i(y) = 0P — u(x)
V=" -np-
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Obviously # > 0in B, Ji and #(0) = 1, hence infp, # < 1. It is easy to check
that i € ST(A, A, f) in B, /; with ||]7||L”(B2ﬁ) < go. In fact, we have

_ 2

f) = m f(x) forye B,
and hence

~ r
1A lln B, s = Wﬂfﬂmwz — (x0)) = €0

if we choose P such that » < (f — 1) P. Hence we may apply Lemma 5.13 to .

Note that u(x) < % if and only if #(y) > 0 1/2 and that 9 1/2 is large if 0 is
close to 1. So we obtain

1
[0 (x0)|

{ P}mQ(xw

if 6 is chosen close to 1. This contradicts (5.10).
Hence we conclude that there exists a 8 = 6(n, A, A) > 1 such that if

u(xo) = P forsome xo € Bj/4
then
u(xy) > 0P forsome x; € Q4ﬁr(x0) C Banr(x0)
provided
Cn, A, A)P~n <r<(0—1)P.

So we need to choose P such that P > (%)”/(”“) and then take r = CP—¢/".
Now we may iterate the above result to get a sequence {xy } such that for any
k=12,...,

u(xg) > 0k P for some Xk € Bopr (Xg—1)

where r, = C(0%~1p)=¢/n = co—(k=1De/n p=¢/n_1p order to have {x;} € B/
weneed ) 2nry < %. Hence we choose My such that

e/n = g1 C \*
My" > 8nC Z n and Mo > -1
k=1

and then take P > My. This finishes the proof. ]
In the rest of this section we prove a technical lemma concerning the second-

order derivatives of functions in S(A, A, f). Such results will be needed in the
discussion of W?2>?-estimates. First we introduce some terminology.
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Let 2 be a bounded domain and u be a continuous function in £2. We define
forM >0
Gy (u,Q) = {xo € Q : there exists an affine function L such that
L(x)— %|x —x0|* < u(x) forx € Q

with equality at xo},

GAJ/FI (u, Q) = {xo € Q : there exists an affine function L such that
L(x) + %|x —x0|? = u(x) forx € Q

with equality at xo},

Gu(u, Q) = Gy (u, ) N Gy (u, Q).
We also define
Ay (u, Q) =Q\ Gy(u, Q),
Af Q) =Q\ G (u,Q),
Ay (u,Q2) = Q\ Gy (u, 2).
In other words, G, (u, 2) (respectively, G;fl (u, 2)) consists of points where there
is a concave (respectively, convex) paraboloid of opening M touching u from
below (respectively, above). Intuitively |Aas (1, 2)| behaves like the distribution

function of D?u. Hence for integrability of D?u we need to study the decay of
|Ap (u, Q)]

LEMMA 5.15 Suppose that Q2 is a bounded domain with B v C Q and that u
belongsto ST(A, A, f)in Bg 5 for some f e C(B6ﬁ). Then there exist positive
constants &g, i, and C, depending only on n, A, and A, such that if |u| < 1in Q
and ”f”L"(Bsﬁ) < 8¢ there holds

A7 (u, Q)N Q1| < Ct™ foranyt > 0.
If; in addition, u € S(A, A, f) in Bg. /u» then

[A;(u, Q)N Q1] < Ct™ foranyt > 0.

In the proof of Lemma 5.15 we need the maximal functions of local integrable

functions. For g € LllOC (R™) we define

1
@) =g [ e
Qr(x)

The maximal operator m is of weak type (1, 1) and of strong type (p, p) for 1 <
p < o0, that is,

c1(n)

t

lm (@ lLr®ry < c2(n, p)lgllLr@ny forl < p < oo.

{x e R" :m(g)(x) = 1}] <

lgllzt@®ny for any ¢ > 0,
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Now we begin to prove Lemma 5.15. The following result is the key ingredient.
It claims that if ¥ has a tangent paraboloid with opening 1 from below somewhere
in Q3, then the set where u has a tangent paraboloid from below with opening M
in Q1 is large. Compare it with Lemma 5.13.

LEMMA 5.16 Suppose that 2 is a bounded domain with B Ji C Q2 and that u

belongs to ST (A, A, f) in Bg . for some f e C(B6ﬁ). Then there exist con-
stants 0 <o < 1, 89 > 0, and M > 1, depending only on n, A, and A, such that if
||f||Ln(Béﬁ) < 8¢ and Gl_(u, Q)N Q3 75 O, then

|Gy, Q)N Q1] > 1—o0.
PROOF: Since G (u,2) N Q3 # @, there is an affine function L1 such that
v > Py in Q with equality at some point in Q3
where
u(x) |x[?

v(x) = n 4+ Li(x) and Pi(x)=1- P

This implies v > 0 in B, v and infg, < 1. Then as in the proof of Lemma 5.13,
for w = v 4+ g, where g is the function constructed in Lemma 5.13, we have

Hw=Tyw}NQO1l>1-0

for some o € (0, 1) if 3 is chosen small. Now we need to prove {w = I'y, }N Q1 C
Gy (u, )N Qy forsome M > 1. Let xo € {w = I'y} N Q1 and take an affine
function L, with L, < 0 on dB, N and

L, <Ty <v+4+g in Bzﬁ with equality at xg.
It follows that
(5.11) P, <L,—g<v in Bzﬁ with equality at x¢

for a concave paraboloid P, of opening My = Moy(n, A, A) > 0.

Next we prove P, < vin Q\ Bzﬁ. Note that P, < —g = 0 = P on BBZﬁ
and that P (xo) = v(xg) > P1(xo) with xg € Q1 C B, ju- 1f we take Mo > %,
then {P, — P; > 0} is convex. We conclude that P, — P; < 0 in R” \ Bzﬁ.
Hence we have P, < P; <vin Q\ Bzﬁ. By (5.11) and the definition of v, we
get xg € Gz_nMO(u,Q) N Q1 with2nMgy > 1. O

PROOF OF LEMMA 5.15: Recall By /; C Q.u € ST(A, A, f)in Bg./y and

(5.12) ulpeo@) = 1. f llLr(Bs sz = o

We will prove that there exist constants M > 1 and 0 < y < 1, depending only on
n, A, and A, such that

|Appx (u, 2) N Q1| < yk forany k =0,1,....
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Step 1. There exist constants M > 1 and 0 < o < 1 such that
(5.13) |Gy (u, )N Q1] > 1—o0.
It is easy to see that |u|co(q) < 1 implies that
G N Q3 # @

for some constant ¢ (1) depending only on n. We may apply Lemma 5.15to u/c(n)
to get (5.13). By a simple adjustment we may assume that g, M, and o in Step 1
are the same as those in Lemma 5.15.

Step 2. We extend f by 0 outside Bg. /» and set for k=0,1,...,
A= A;4k+l(u’Q) nQi,
B = (Ay (. Q) N Q1) Ufx € Q1 :m(f™)(x) = (er M*)"},
for some c¢; > 0 to be determined. Then there holds
4| = o|B|
where M > 1 and 0 < o < 1 are as before. Recall that m(f") denotes the
maximal function of f7.
We prove this by Lemma 5.9. It is easy to see that |A|] < ¢ since we have
|G;Ik+1(u,52) N Q1] > |Gy (u, 2) N Q1| > 1—0 by Step 1.
Next we claim that if @ = Q(x¢) is a cube in Q1 such that

(5.14) Ay (. Q)N Q[ =14N Q| > 0|0,

then Q N Q1 C B for Q = Q3r(x0).
We prove this by contradiction. Suppose not. We may take an X such that

~ 1
XeGy,(u,2)NQ and sup — / |F1" < (caM*)™.
M¥ >0 IQr(x)IQ -
r(x

Consider the transformation
X =Xxog+ry fory e Qrandx € Q = Qr(xo)
and the function
1
Sk u(x).
Itis easy to check that By /; C Q, the image of £ under the transformation above,
and that ii € S*(A. A, f) in By with

u(y) =

~ 1
T =2 f() fory € Be g
By the choice of X we have
Gy (@, Q)N Q3 # 2.
Since B¢ sz (x0) C Q15 smr (X) there holds

~ 1
I/l (Bg s = W—kllflan(leﬁr(x)) <c(n)c1 < 8o
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if we take ¢; small enough, depending only on 7, A, and A.
Hence u satisfies the assumption of Lemma 5.16 with Q replaced by 2. We
may apply Lemma 5.16 to i to get

Gy QN Q1210 or |Gy .2 NQ|>(1-0)Q]
This contradicts (5.14). We are in a position to apply Lemma 5.9.
Step 3. We finish the proof of Lemma 5.15. Define fork =0, 1, ...,

ap = Ay (u, Q) N Q1
Br = l{x € Q1 :m(f™)(x) = (ctM¥)"}).

Then Step 2 implies ax 11 < o(ax + Br) forany k = 0, 1,. ... Hence by iteration
we have

k—1
ap < ok + Zak_i,@,-.
i=0
Since || f" ||, < 83 and the maximal operator is of weak type (1, 1), we conclude
that
B < c(m)8g(crM*)™" = C(n. A, A)M ™",

This implies

k—1 . k—1 . .

Zak_’ﬁi <C Zok_’M_’“ < Ck)/(])c

i=0 i=0
with y9 = max{o, M ™"} < 1. Therefore we obtain for k large

o <0* + Chy§ < (1+Chyyg <v*
for some y = y(n, A, A) € (0, 1).
This finishes the proof. U
REMARK 5.17. The polynomial decay of the function

p(t) = A (u,2) 0 04

for u € S(A, A, f) implies that D?u is LP-integrable in Q1 for small p > 0
depending only on n, A, and A. In order to show the L”-integrability for large p
we need to speed up the convergence in the proof of Lemma 5.15. We will discuss
W 2:P_estimates in Section 5.5.

5.4. Schauder Estimates

In this section we will prove the Schauder estimates for viscosity solutions.
Throughout this section we always assume that a;; € C(B) satisfies

ME* < aij(x)EE; < AJE]* forany x € By and any £ € R”

for some positive constants A and A and that f is a continuous function in Bj.
The following approximation result plays an important role in the discussion
of regularity theory.
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LEMMA 5.18 Suppose u € C(By) is a viscosity solution of
aijjDiju = f in By

with |u| < 1in By. Assume for some 0 < & < 1—16,

laij —aij (0)|[Ln(Bs,4) < &

Then there exists a function h € C(E3/4) witha;j(0)Djjh = 0in B34 and |h| < 1
in B34 such that

[u = hl|Loo(B, ) < CLe” + |1 fllLn(B))}
where C = C(n, A, A) is a positive constant and y = y(n, A, A) € (0, 1).
PROOF: Solve for h € C(§3/4) N C°(B3/4) such that
a;j(0)Dijh =0 in B34,
h=u ondBjzy.

The maximum principle implies |2| < 1in B3,4. Note that u belongsto S(A, A, 1)
in By. Corollary 5.11 implies thatu € C“(E3/4) forsomea = a(n, A, A) € (0,1)
with the estimate

lull oy gy < CO A AL+ 1 ()}
By Lemma 1.35 we have

12l carrg,,yy < Clullcucss,y = CO AN+ f e}

Since u —h = 0 on dB3/4 we getforany 0 < § < %

(5.15) = hlpoo@Bs,4_5) < C8Y2{1 + || fllLn(sy))-
We claim forany 0 < § < 1
(5.16) |D2h|poo(By s s) < CO2 21+ || f ln(sy))-

In fact, for any xo € Bsz/4—5 we apply interior C 2_estimate to h — h(xy) in
Bs(xo) C B34 for some x1 € dBg(xo) and obtain

|D2h(xo)] < C872 sup |h—h(x1)| < CE26%2{1 + | fln(ay))-
Bs(xo0)
Note that u — A is a viscosity solution of
ajjDij(u—h) = f —(aij —a;j(0))Djjh = F in By4.
By Theorem 5.8 (the Alexandroff maximum principle) we have with (5.15) and
(5.16)
u — h|L°°(B3/4—s)
< |u—"hlpeo@Bs,u_s) + CIFllLn(Bs/4_s)
< lu-— h|L°°(333/4—5)
+ C|D?h|poo(By,4_pllaij — aij(O)llLa(ss ) + ClLf lLn(ay)
< CE*? + 8221 + || fllLnay} + CILSf Lncay)-
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Take § = ¢!/2 < 1 and then y = 2. This finishes the proof. O
For the next result we need to introduce the following concept.

DEFINITION 5.19 A function g is Holder-continuous at 0 with exponent « in the
L™ sense if

o<r<17

ey, 0= swp (o B/ g0 )" <.

Now we state the Schauder estimates.

THEOREM 5.20 Suppose u € C(B1) is a viscosity solution of
aijDiju = f in By.

Assume {a;;} is Holder-continuous at 0 with exponent o in the L™ sense for some
a € (0,1). If f is Holder-continuous at 0 with exponent o in the L"-sense, then u
is C*“ at 0. Moreover; there exists a polynomial P of degree 2 such that

lu— Plpoo(s, o)) < Cxr*T® forany0 <r <1,
|P(0)| + [DP(0)| + |D?>P(0)] < Cx.
Cy < C{lu|poo(sy) + 1/ (O) + [flce, (0)}

n

where C is a positive constant depending only on n, A, A, «, and [a; j]CLan (0).

PROOF: First we assume f(0) = 0. For that we may consider v = u —
bijxix;j f(0)/2 for some constant matrix {;; } such that a;; (0)b;; = 1. By scaling
we also assume that [a; J']Cfn (0) is small. Next by considering for § > 0

u
lulpeocmy) + 31 f]ce, (0)

n
we may assume [u|zc0(p,) < 1 and [f]Cfn (0) <.

In the following we prove that there is a constant § > 0, depending only on 7,
A, A, and «, such that if u € C(By) is a viscosity solution of

ajjDijju = f in By

with
1
| By |

1
ulzeo(y = 1, laijleg, (0) <6, ( /Ifl”) <§r® forany0 <r <1,
B,

then there exists a polynomial P of degree 2 such that

(5.17) lu— Plpoo(s, 0y < Cr*™® forany0 <r <1
and
(5.18) |P(0)| + [DP(0)| + |D*P(0)| < C

for some positive constant C depending only on 1, A, A, and «.
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We claim that there exist 0 < u < 1, depending only on n, A, A, and «, and a
sequence of polynomials of degree 2

1
Pr(x) =ar + by -x + EXT Crx

such that for any k = 0, 1,...,

(5.19) aij(0)Dij Py = 0, |u— Pylroo( ;) < W@+,
(5.20) lag — ag—1| + 1 b — by | + 1> ® D |C — C|
' < cplk—ne+e)

where Pp = P_; = 0 and C is a positive constant depending only on n, A, A,
and o.

We first prove that Theorem 5.20 follows from (5.19) and (5.20). It is easy to
see that ag, by, and Cy converge and that the limiting polynomial

1
p(X) =doo + boo - x + EXTCOOX
satisfies
|Pe(x) = p(0)] = CHxPps® + |x|p@FDE 4 pOF2Ey < ¢y Bk
for any |x| < u¥. Hence we have for |x| < uf
u(x) = p()] < Ju(x) = Pe)] + [ Pe(x) = p(x)] < Cp®Fok,
which implies that
lu(x) — p(x)] < C|x|**® forany x € Bj.

Now we prove (5.19) and (5.20). Clearly (5.19) and (5.20) hold for k = 0.
Assume they hold for k = 0,1,...,/. We prove for k = [ + 1. Consider the
function

- 1
u(y) = W(“ — P)(u'y) fory e B.
Then &7 € C(B)) is a viscosity solution of
aijjDiju = f in By
with
~ 1 I
aij(y) = —zaij (' y),
n
~ 1
f) = W{f(uly) —a;j (' y) Dij P}.

Now we check that & satisfies the assumptions of Lemma 5.18. For that we
calculate

~ ~ 1
IG@ij — a@ij )|z (By) = Wnaij —aij(O)Lrs,,) < laijleg, (0) =6
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and
| fllLrBy) < WllfHLn(Bu,)JrW sup | D= Pyllaij —aij (0)|[Ln(s,,) < 8+C8

where we used
1 1
ID2P| < ) ID*Pe=D*Py| = Y u TV <.
k=1 k=1

Hence we take ¢ = C(n, A, A)§ in Lemma 5.18. Then by Lemma 5.18 there exists
a function & € C(E3/4) with @;;(0)D;;h = 0in B34 and |h| < 1 in B34 such
that

|t — hlLoo(B, ,,) < Cle” +¢} <2Ce".

Write P(y) = h(0) + Dh(0) + y"D2h(0)y/2. Then by interior estimates
for h we have

|l — P|poo(p,,) < |l — hlpoo(s,) + |h — Plreo(p,) <2Ce” + Cp? < >t
by choosing © small and then ¢ small accordingly. Rescaling back, we have
lu(x) — Pr(x) — W CrO P x)| < pdTDCHD) forany x € B+,
This implies (5.19) for k = [ + 1 if we define
Pry1(x) = Pe(x) + p'CTO P x).
Estimate (5.20) follows easily. O

To finish this section we state the Cordes-Nirenberg type estimate. The proof
is similar to that of Theorem 5.20.

THEOREM 5.21 Suppose u € C(B1) is a viscosity solution of
aijDiju = f in By.

Then for any a € (0, 1) there exists an 6 > 0, depending only on n, A, A, and «,
such that if

1
1 "
(m/mij —al-j(O)l") <0 foranyO<r <1,
.

r

then u is CY% ar 0; that is, there exists an affine function L such that

+a

|lu — L|L°°(B,.(O)) < C*rl forany0 <r <1,

|IL(0)| + [DL(0)| = Cx.,

1
_ 1 n
Co < Clulpooqsy + sup ! ( /|f|") }
o<r<l1 |B

rl
B,

where C is a positive constant depending only on n, A, A, and a.
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5.5. W2:P Estimates

In this section we will prove the W 2:P-estimates for viscosity solutions. We
always assume throughout this section that a;; € C(B) satisfies

ME? < a;j(x)EE; < AlE]*> forany x € B; and any £ € R”

for some positive constants A and A and that f is a continuous function in Bj.
The main result in this section is the following theorem.

THEOREM 5.22 Suppose u € C(B1) is a viscosity solution of
aijjDijju = f in By.

Then for any p € (n,o0) there exists an € > 0, depending only onn, A, A, and p,
such that if

1

1 ¥

(r o)l / |ai; —aij(x0)|") <e forany Br(xo) C Bi,
R

By (xo0)

thenu € Wz’p(Bl). Moreover, there holds

loc
lullw2.2B, ,,) < ClulLeomy) + 1/ |Lr(B))}
where C is a positive constant depending only on n, A, A, and p.
As before we prove the following result instead.
THEOREM 5.23 Suppose u € C(Bsﬁ) is a viscosity solution of
ajjDijju = f in Bgﬁ.

Then for any p € (n, 00) there exist positive constants € and C, depending only on
n, A, A, and p, such that if

lullzoeg sy = 1. IS llLrcBg 5 <&

and

=

1
(m / |a,~j — aij(x0)|") <e& forany Br(X()) C BSﬁ’

By (x0)
thenu € W%P(By) and lullw2.r(B,) < C.
Before the proof we first describe the strategy. Let €2 be a bounded domain
and u be a continuous function in 2. As in Section 2, we define for M > 0
G (u, 2) = {xo € Q : there exists an affine function L such that
L(x) = Hlx = x> < u(x) < L(x) + Flx - xof?
for x € Q with equality at x¢},
Apy(u, Q) = Q\ Gy (u, Q).
We consider the function
0(x) =0, 2)(x) =inf{M : x € Gpy(u,Q)} € [0,00] forx € Q.
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It is straightforward to verify that for p € (1, oo] the condition 6 € L?(£2) implies
D?u e L?(Q) and
IDullLr (@) < 2010Lr @)
In order to study the integrability of the function 6 we discuss its distribution
function, that is,

Ho(t) = {x € Q:0(x) >t} foranyt > 0.
It is clear that
wo(t) <|A¢(u, Q)| foranyt > 0.
Hence we need to study the decay of |A;(u, 2)|.
LEMMA 5.24 Suppose that Q2 is a bounded domain with Bg vi C Q and that
u € C(R) is a viscosity solution of
aijjDiju = f in BS«/ﬁ‘
Then for any €y € (0, 1) there exist an M > 1, depending only on n, A, and A, and
an ¢ € (0, 1), depending only on n, A, A, and &g, such that if

(5.21) 1oy <& lla —aij O, ) <&
and
(5.22) Gi1(u, Q)N Q3 # I,

then there holds
|GM(M,Q) N Q1| >1—¢gp.

PROOF: Let x; € G1(u, 2) N Q3. Then there exists an affine function L such
that

1 1
—Elx —x1)? <u(x)—L(x) < 5|x —x1)> inQ.

By considering (v — L)/c(n) instead of u, for ¢(n) > 1 large enough, depending
only on n, we may assume that

(5.23) lu| <1 in Bg s,
which implies
(5.24) —|x*> <u(x) < |x|*> foranyx e Q\ Be /-
Solve for h € C(1§7ﬁ) N C°°(B7ﬁ) such that
a;ij(0)D;jjh =0 in B7ﬁ,
h=u ondB; s
Then Lemma 5.18 implies
(5.25) lu = hlpeo(By s = CLe” + 1 f LBy m}
and

(5.26) 1nlc2Bg m = €
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where C > 0 and y € (0, 1), as in Lemma 5.18, depend only on n, A, and A.

Consider 4| By i Extend & outside EG /n continuously such that h =uin Q\
B3 /n and lu —hlpeo(@) = [u — h|Loo(BGﬁ). Note |#| < 1in Q. It follows that
|u — h|poo(q) < 2 and hence with (5.24)

—2—|x]? <h(x) <2+ |x|? for any x € Q\E6ﬁ.

Then there exists an N > 1, depending only on n, A, and A, such that

(5.27) 01 C Gy(h, Q).
Consider
_ min{l, 8o}
 2CeY (= h)

where 8¢ is the constant in Lemma 5.15 and C and y are constants in (5.25) and
(5.26). It is easy to check that w satisfies the hypotheses of Lemma 5.15 in 2. We
may apply Lemma 5.15 to get

[A;(w, Q)N Q| < Ct™™ foranyr > 0.

Therefore we have

[As(u—h,Q)N Q1| < Ce""s™™ foranys > 0.
It follows that

IGN(u—h, Q)N 01| >1—-C1e" > 1—¢
if we choose ¢ = e(n, A, A, g0) € (0, 1) small. With (5.27) we get
|Gan (u, 2) N Q1] = 1 —&o.
O

REMARK 5.25. In fact, we prove Lemma 5.24 with assumption (5.22) replaced
by (5.23).
PROOF OF THEOREM 5.23: Our proof has three steps.

Step 1. For any g9 € (0, 1) there exist an M > 1, depending only on n, A,
and A, and an ¢ € (0, 1), depending only on n, A, A, and &g, such that under the
assumptions of Theorem 5.23 there holds

(5.28) |Gum (u, Bg ) N Q1] = 1= &o.

We remark that M does not depend on &o. In fact, we have |u| < 1 < |x|? in
Bgﬁ \ Bsﬁ- We may apply Lemma 5.24 to get (5.28) with 2 = Bgﬁ (see
Remark 5.25).

Step 2. We set, fork =0,1,...,

A= AMk+1(u,Bgﬁ) n Ql,
B = (Api(u, By ) N Q1) Ufx € Q1 = m(f™)(x) = (cxM*)"},
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for some ¢; > 0 to be determined, depending only on n, A, A, and &g. Then there
holds

|A| < &o|B].
The proof is identical to that of Lemma 5.15.
Step 3. We finish the proof of Lemma 5.24. We take ¢¢ such that

1
MP =_
€0 )

where M, depending only on n, A, and A, is as in Step 1. Hence the constants ¢
and c; depend only on n, A, A, and p. Define fork = 0,1, ...,

a = [Apx(u, Bg j) N Q1
Br = l{x € Q1 :m(f™)(x) = (et M*)"}].

Then Step 2 implies ag 11 < €o(og + Br) forany k = 0, 1, .... Hence by iteration
we have
k—1

ar <&+ )& Bi-
i=1

Since f™ € LP/™ and the maximal operator is of strong type (p, p), we conclude
that m(f™) € LP/™ and

lmCf™grm < CIfIL, = C.

Then the definition of 85 implies

> MPRB < C.

k>0
As before we set
0(x) = 0(u, By/2)(x) = inf{M : x € Gy (u, By/2)} € [0,00] forx € By,
and
pg(t) = [{x € By : 0(x) > t}| foranyt > 0.
The proof will be finished if we show
1601lLr(B,,,) < C.
It is clear that
po(t) < [Ai(u, Byj2)| = |A:(u, Bg z) N Q1] forany s > 0.

It suffices to prove, with the definition of oy, that

3 MPoy < C.
k>1
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In fact, we have

k—1
Yo MPRay <y (eoMPF YN e Mg

k>1 k>1 k>1i=0
=Y ke (XM (Y ) =c
k>1 i>0 j=>1
This finishes the proof. (I

5.6. Global Estimates

In the previous two sections, we derived interior Schauder estimates and W 2:7-
estimates for viscosity solutions. In fact, these estimates hold globally. In this
section, we state these results without proof for classical solutions of Dirichlet
problems for general linear elliptic equations. These results will be needed in the
next chapter.

Let Q be a bounded domain in R”, a;; be continuous functions in €2, and
b; and ¢ be bounded functions in 2. For some bounded function f in € and

continuous function ¢ on 9€2, consider

aiiDiju~+b;Diju + cu = in Q,
(5.29) ijij i i f
u=¢ onodQ.

We always assume
aij(x)&& > A|E)*> forany x € Q and & € R”
for some constant A > 0. In the following, we may require that ¢ be defined in 2.

We first state the global Schauder estimate.

THEOREM 5.26 For some constant o € (0, 1), let Q2 be a bounded C22 _domain
inR", and aij, b, and ¢ be C*(S2)-functions. Suppose u € C%%(Q) is a solution
of (5.29) for some f € C*(Q) and ¢ € C*%(Q). Then

||”||C2.a(g_2) = C{llullLee(e) + ||f||ca(g_2) + ||§0||c2,a(g_2)}7
where C is a positive constant depending only onn, a, A, , and the C*()-norms
ofa,-j, bl', and c.
Next, we state the global W ?2:P-estimate.

THEOREM 5.27 Let Q be a bounded C V> -domain in R", aij be continuous func-
tions in 2, and b; and ¢ be bounded functions in Q2. For some constant p > 1, sup-
poseu € WP (Q) is a solution of (5.29) for some f € LP(Q) and p € WP (Q).
Then

lullw2.r@) = CllullLr@) + 1/ lLr@) + ll@llw2.r @)
where C is a positive constant depending only on n, p, A, Q, the moduli of conti-
nuity of a;j, and the L*°(Q2)-norms of a;;, b;, and c.

By Sobolev embedding, we have the following result on C **-norms.
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COROLLARY 5.28 Let Q be a bounded C''-domain in R", aij be continuous
functions in Q, and b;, ¢ be bounded functions in Q. For some constant p > n,
suppose u € WP (Q) is a solution of (5.29) for some f € LP(Q) and ¢ €
W2P(Q). Then

lullgra-2 o) = ClllullLr@) + 1 fllLr@) + llellwz.r @)

where C is a positive constant depending only on n, p, A, Q, the moduli of conti-
nuity of a;; and the L*°(2)-norms of a;;, b;, and c.

We need to point out that Corollary 5.28 can be proved directly, without using
Theorem 5.27.
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CHAPTER 6

Existence of Solutions

In this chapter we will discuss the existence of solutions of some boundary
value problems for elliptic differential equations. We will illustrate several meth-
ods.

6.1. Perron Method

In this section we will discuss the existence of solutions by the Perron method,
where we prove the existence of solutions of Dirichlet problems for elliptic opera-
tors on general domains when solutions of the same problems on balls are known
to exist. We will illustrate this by the Laplace operator.

Let © be a bounded domain in R” and ¢ be a continuous function on 052.
Consider

Au=0 1in €,

©.1) u=¢ onodf2.

If Q is a ball, then the solution of (6.1) is given by the Poisson integral formula.
We now solve (6.1) by Perron’s method. The maximum principle plays an essential
role. In discussions below, we avoid mean value properties of harmonic functions.

We first define continuous subharmonic and subharmonic functions based on
the maximum principle.

DEFINITION 6.1 Let Q2 be a domain in R” and v be a continuous function in 2.
Then v is subharmonic (superharmonic) in € if for any ball B C €2 and any
harmonic function w € C(B)

v<(>)w ondB implies v <(>)w in B.

We now prove a maximum principle for such subharmonic and superharmonic
functions.

LEMMA 6.2 Let Q be a bounded domain in R™ and u,v € C(Q). Suppose u is
subharmonic in Q and v is a superharmonic in Q withu < v on 0Q2. Thenu < v
in Q.

PROOF: Without loss of generality, we assume €2 is connected. We first note
that u — v < 0 on 2. Set M = maxg (v — v) and

D={xeQ: :ukx)—vx)=M}CQ.

125
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It is obvious that D is relatively closed. This follows easily from the continuity
of u and v.

Next we show that D is open. For any xo € D, we take r < dist(xg, 0€2). Let
u and v solve, respectively,

Au =0 in By(xg9), u =u on dB,(xp),

AV =0 in By(xg), v = v on dB,(xp).
The existence of # and v in B, (xg) is implied by the Poisson integral formula. The
definition of subsolutions and supersolutions implies ¥ < % and v < v in B (xp);
hence

U—v>u—v in By(xp).
Next,
Au—v)=0 in By (xp),
U—v=u—v ondBr(xp).
Withu—v < M on dB;(x¢), the maximum principle implies u—v < M in B;(xo);
in particular,
M > (4 —v)(x0) > (u —v)(x0) = M.

Hence (¥ — v)(xo) = M and then u — v has an interior maximum at xo. By
the strong maximum principle, ¥ — v = M in B,(xg). Therefore, u —v = M

on dB;(xg). This holds for any r < dist(xg, d2). Then u —v = M in B,(x¢)
and hence B, (xo) C D. In conclusion, D is both relatively closed and open in 2.

Therefore either D = @ or D = . In other words, u — v either attains its
maximum only on d€2 or u — v is constant. By ¥ < v in d2, we have u < v in
for both cases. O

The proof in fact yields the strong maximum principle: Either u < v in Q2 or
u — v is constant in 2.

Before we start our discussion of Perron’s method, we demonstrate how to
generate bigger subharmonic functions from existing subharmonic functions.

LEMMA 6.3 Letv € C(Q) bea subharmonic function in @ and B be a ball in 2
with B C Q. Let w be defined by w = v in 2 \ B and Aw = 0in B. Then w is a
subharmonic function in Q and v < w in Q.

The function w is often called the harmonic lifting of v (in B).

PROOF: The existence of w in B is implied by the Poisson integral formula.
Then w is smooth in B and is continuous in Q. We also have v < w in B by
Definition 6.1.

Next, we take any B’ with B’ C  and consider a harmonic function u €
C(B’) withw < u on dB’. By v < w on dB’, we have v < u on dB’. Then, v is
subharmonic and u is harmonic in B’ with v < u on dB’. By Lemma 6.2, we have
v <wuin B’. Hence w < u in B \ B’. Next, both w and u are harmonic in B N B’
and w < u on d(B N B’). By the maximum principle, we have w < u in B N B’.
Hence w < u in B’. Therefore, w is subharmonic in by Definition 6.1. O
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Next, we solve (6.1) by the Perron method. Set
(6.2) ugp(x) =sup{v(x):ve C() is subharmonic in € and v < ¢ on d2}.

In the first step in the Perron method, we prove that u, in (6.2) is a harmonic
function in €2.

LEMMA 6.4 Let Q be a bounded domain in R" and ¢ be a continuous function
on 092. Then uy, defined in (6.2) is harmonic in Q.

PROOF: Set
Sp=1{v:ve C(2) is subharmonic in € and v < ¢ on IQ2}.
Then for any x € Q

Up(x) = sup{v(x) : v € Sp}.
In the following, we simply write S = S,,.

Step 1. We prove that uy is well defined. To do this, we set
m=ming, M = maxg.
02 ¢ a2 ¢
We note that the constant function m is in S and hence the set S is not empty.

Next, the constant function M is obviously harmonic in  with ¢ < M on 2. By
Lemma 6.2, forany v € S

v<M inQ.
Thus u,, is well defined and uy, < M in Q.

Step 2. We claim that S is closed by taking the maximum among finitely many
functions in S. We take arbitrary vy, va,..., v, € S and set

v = max{vy, va,..., Uk}

It follows easily from Definition 6.1 that v is subharmonic in 2. Hence v € S.

Step 3. We prove that u, is harmonic in any B, (xo) C . First, by the defini-
tion of uy, there exists a sequence of functions v; € & such that

Jim v (x0) = ug(xo).
We may replace v; above by any v; € S with v; > v; since
vi (x0) < Vi(x0) < ug(xo).
Replacing, if necessary, v; by max{m, v;} € S, we may also assume
m=<v; <uy, inf.

For the fixed B;(xg) and each v;, we let w; be the harmonic lifting in Lemma 6.3.
In other words, w; = v; in Q \ Br(xo) and
Aw; =0 in By(x9),
w; = v; on dB(xp).
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By Lemma 6.3, w; € S and v; < w; in 2. Moreover, w; is harmonic in B, (xg)
and satisfies

lim w; (x0) = ugp(xo),

1—>00

m=<w; <uy in§2,
forany i = 1,2,.... By the compactness of bounded harmonic functions, there
exists a harmonic function w in By (x¢) such that a subsequence of {w;}, still de-

noted by {w; }, converges to w in any compact subset of B,(x¢). We then easily
conclude

w < Uy in Br(xg) and w(xp) = uy(xop).
We now claim uy, = w in B, (xg). To see this, we take any X € B,(x¢) and

proceed similarly as before, with X replacing xo. By the definition of u,, there
exists a sequence of functions v; € S such that

lim v;(X) = uyp(X).
I —>00

Replacing, if necessary, v; by max{v;, w;} € S, we may also assume
w; < v; < Uy in 2.

For the fixed B (x¢) and each v;, we let w; be the harmonic lifting in Lemma 6.3.
Then, w; € S and v; < w; in . Moreover, w; is harmonic in B (x¢) and satisfies

lim w; (X) = uy(X),
1 —>00
m < max{v;, w;} < w; <uy in2,

foranyi = 1,2,.... By the compactness of bounded harmonic functions again,
there exists a harmonic function w in B, (xp) such that a subsequence of w; con-
verges to w in any compact subset of B, (x¢). We then easily conclude

W< W <u, in B (xo),
w(xg) = W(xo) = ugy(xo),
T(F) = uy (T).

We first note that w — w is a harmonic function in B, (xg) with a maximum
attained at xo. By applying the strong maximum principle to w — w in B,/ (xg)
for any r’ < r, we conclude that w — w is constant, which is obviously 0. This
implies w = w in B;(xp), and in particular, w(X) = w(X) = uy(x). We then
have w = uy in B, (xp) since X is arbitrary in B, (xo). Therefore, u, is harmonic
in By (xp). O

We note that 1, in Lemma 6.4 is defined only in 2. To discuss limits of 1 (x)
as x approaches the boundary, we need to impose additional assumptions on the
boundary 0€2.
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LEMMA 6.5 Let ¢ be a continuous function on 02 and u, be the function defined
in (6.2). For some xg € 0S2, suppose wx, € C(2) is a subharmonic function in Q2
such that

(6.3) Wxo(x0) =0, wx,(x) <0 forany x € 02\ {xo};
then
dim () = (o).
PROOF: As in the proof of Lemma 6.4, we set
Sp=1{v:ve C(2) is subharmonic in € and v < ¢ on IQ2}.

We simply write w = wy, and set M = maxyq |¢|.
Let ¢ be an arbitrary positive constant. By the continuity of ¢ at x¢, there exists
a positive constant § such that

lo(x) —(xo)| <€
for any x € 92 N Bg(xp). We then choose K sufficiently large so that
—Kw(x) >2M

for any x € 02 \ Bs(xp); hence,

lp —p(x0)] <e— Kw ondL2.
Since ¢(x9)—e+ Kw(x) is a subharmonic function in  with ¢(xg)—e+ Kw < ¢
on 02, we have ¢(x9) — & + Kw € Sy. The definition of u, implies

¢(xo) —e+ Kw <uy inQ.
On the other hand, ¢(x¢) +&— Kw is a superharmonic in  with ¢(x¢)+e—Kw >
@ on 2. Hence for any v € S, we obtain by Lemma 6.2

vV <¢(xo)+e—Kw inQ.

Again by the definition of u,, we have

Uy < p(xo) +e— Kw in Q.
Therefore,

lup —p(x0) <e— Kw ing,
which implies

limsup |ug (x) — ¢(x0)| < .
X—>X0

We obtain the desired result by letting ¢ — 0. (I

The function wy, satisfying (6.3) is often called a barrier function. Barrier
functions can be constructed for a large class of domains €2. Take, for example, the
case where Q satisfies an exterior sphere condition at xo € 902 in the sense that
there exists a ball B, (o) such that

QN Bro(y()) =, 5_2 N Ero(y()) = {XO}.
To construct a barrier function at xq, we set

Wyo(¥) = T(x — yo) = (xo — yo) forany x € &
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where I' is the fundamental solution of the Laplace operator. It is easy to see that
Wy, 1s @ harmonic function in €2 and satisfies (6.3). We note that the exterior sphere
condition always holds for C2-domains.

THEOREM 6.6 Let Q be a bounded domain in R" satisfying the exterior sphere

condition at every boundary point. Then for any ¢ € C(9R2), (6.1) admits a solu-
tionu € C*(Q2) N C(R).

6.2. Variational Method

In this section we discuss the Dirichlet problem for elliptic differential equa-
tions of divergence form and prove the existence of weak solutions.

Let 2 be a bounded domain in R” and a;;, b;, and ¢ be bounded functions
in . Consider the differential operator

Lu = —Dj(aijDiu) + bi Dju + cu.
We always assume that
MEP < aij(0)&g < AlgP?
forany x € Q and & € R”.
DEFINITION 6.7 Let f € L?>(Q)and u € HI(I)C(Q). Then u is a weak solution of
Lu= finQif

(6.4) /(aijDiungo + biDiug + cup)dx = / fodx
Q Q

for any ¢ € HO1 (2).
Next, we define

a(u,v) = /(a,-jD,-uDjv + bi Diuv 4+ cuv)dx
Q

for any u, v € HO1 (£2). We call a the bilinear form associated with the operator L.
If a;j = aj; and ¢ = 0, then a is symmetric, i.e.,

a(u,v) =a(v,u) foranyu,v e HOI(SZ).

We now solve the Dirichlet problem in the weak sense for a special class of
elliptic operators. We recall that the standard H, 01 (£2) inner product is defined by

(u,v)H(;(Q) Z/Vu-Vvdx.
Q

THEOREM 6.8 Let a;j, bi, and ¢ be bounded functions in Q and f € L*(R).
Assume the bilinear form a associated with L is coercive; i.e.,
2
a(uv u) = cOllu”H(;(Q)
for any u € HO1 (2). Then there exists a unique weak solution u € HO1 () of
Lu=f.
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PROOF: We define a linear functional F on HO1 () by

Flp) = / fodx
Q

for any ¢ € HO1 (€2). By the Cauchy inequality and the Poincare inequality, we
have

[F@I = If 2@ lleliz@ = Clf 2@ llelmgg @)
Hence F is a bounded linear functional on HO1 ().

We first consider a special case where a is symmetric. (This includes the case
ajj = aj; and ¢ > 0.) Itis easy to see that a(u, v) is an inner product in HO1 ()
that is equivalent to the standard H, 01 (R2) inner product. By the Riesz representation
theorem, there exists a u € HO1 (£2) such that

a(u,p) = F(p)

for any ¢ € HO1 (£2). Therefore, u is the desired solution.
We now consider the general case where a is not necessarily symmetric. We
first note that

la(u,v)| < C||u||H(;(Q)||U||HOl(Q)
forany u,v € HO1 (2).
For each fixed u € HO1 (£2), the mapping v + a(u,v) is a bounded linear

functional on HO1 (2). By the Riesz representation theorem, there exists a unique
w e HO1 (£2) such that

a(u,v) = (w, U)H(}(Q)
forany v € HO1 (2). Now we write w = Au; i.e.,

a(u,v) = (Au,v)Hé(Q)
for any u,v € HO1 (€2). It is straightforward to check that A is a linear operator
on HO1 (2).

Next,
||Au||§_1(}(m = (AM’AM)H(;(Q) =a(u, Au) < C”u”H(;(Q)HAu”H(;(Q)
and hence
| Aull gy =< Cllull gy foranyu e Hy ().
Therefore, A : HO1 (Q) —> HO1 (£2) is a bounded linear operator. By the coercive-
ness, we have
Collullz&(m < a@,u) = (Au, W) g1y < lullg) @44l g @)
and hence
CO”“”H(;(Q) = ||A”||H(;(Q)

for any u € HO1 (€2). It follows that A is one-to-one and the range R(A) of A is
closed in HO1 (2).
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Next, for any w € R(A)*, we have

collw < a(w.w) = (Aw, W) g1 gy =0

2
HY(Q)

and hence w = 0. Then R(A)L = {0} and hence R(A) = HO1 (£2); in other words,
A is onto.

For the bounded linear functional F in HO1 (f2) introduced at the beginning of
the proof, by the Riesz representation theorem, there exists a w € HO1 (£2) such that

(w,v)H(;(Q) = F(v)
forany v € HO1 (£2). Since A is onto, we can findau € HO1 (£2) such that Au = w;
hence,
a(u’v) = (Au’v)Hé(Q) = (w’v)H(;(Q) = F(U)

forany v € HO1 (£2). This proves the existence.
For the uniqueness, we assume i € HO1 (R2) also satisfies

a(@,v) = F(v)
for any v € HO1 (€2). Then
alu—1u,v) =0
for any v € HO1 (). With v = u — %, we obtain
a(u—u,u—1u)=0.
By the coerciveness, we have u = u. ]
We point out that the method in the proof of the general case, when formulated
in an abstract form, is known as the Lax-Milgram theorem.
The Dirichlet problem can be solved for a larger class of elliptic equations of

divergence form. However, the method is much more involved. In the following,
we state a simple consequence of Theorem 6.8.

THEOREM 6.9 Let a;j, bi, and ¢ be bounded functions in Q and f € L*(R).
Then there exists a jLo depending only on a;j, b;, and ¢ such that for any |1 > Lo
there exists a unique weak solution u € HO1 Q) of (L+ pnwu=f.

PROOF: Define

ay(,v) = a(u,v) + U, v)2q)-

In other words, a,, is the bilinear form associated with the operator L + . It
is easy to check that a, is coercive for p sufficiently large. Then we may apply
Theorem 6.8 to L + L. 0

In the rest of this section, we use a minimizing process to solve the Dirichlet
problem on the bounded domain with the homogeneous boundary value.
Let €2 be a bounded domain «;;, and ¢ be bounded functions in €2 satisfying

MEP < aij(0EE < AlEP
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for any x € Q and £ € R”. Suppose f € L?(Q). Define

1
(6.5) J(u) = 3 /(a,-jD,-uDju + cu?)dx —|—/uf dx.
Q Q

THEOREM 6.10 Let a;; and ¢ be bounded functions in 2 with a;; = aj;; and
c>0and f € L>(R). Then J admits a minimizer u € HO1 ().

It is easy to check that the minimizer u is a weak solution of
—Dj(ajjDiu) +cu = f inQ.

PROOF: We first prove that J has a lower bound in HO1 (€2). By the Poincare
inequality, we have for any u € ’H(l) ()

/uzdxfC/|Vu|2dx,
Q

Q

where C is a positive constant depending only on 2. Then

f|uf|dx<(/u dx) (/fzdx)l
(/|Vu|2dx) (/fzdx)

< — [ |Vu? Al f2dx.
_4/\/| ul“dx +C /f dx
Q Q

Hence for any u € Hj (Q),

| /\

(6.6) J(u) > %/szdx—Ck/fzdx
Q Q

and in particular

Jw)>—C [ f?dx.
/

Therefore, J has a lower bound in HO1 (£2). We set
Jo = inf{J(u) : u € HY(Q)}.

Next, we prove that Jy is attained by some u € HO1 (£2). We consider a min-
imizing sequence {u;} C Ho1 (2) with J(ug) — Jo as k — oo. By (6.6) we
have

/ |Vug|? dx < 4AJ (ug) + 4C/\2/§2f2 dx.

y
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The convergence of J(uy) obviously implies that {J(uz)} is a bounded sequence;
then [lugl 4 g is uniformly bounded. By Rellich’s theorem, there exists a subse-

quence {uy } and au € Ho1 (£2) such that
up — u  inthe L?-norm as k' — oco.

Next, with the help of the Hilbert space structure of HO1 (R2) it is not difficult to
prove

J(u) < liminf J(up).
k’—o00
This implies J(u) = Jo. We conclude that Jj is attained in HO1 (). O

We point out that the minimizing process is an important method in the calculus
of variation.

6.3. Continuity Method

In this section we discuss how to solve Dirichlet problems by the method of
continuity. We illustrate this method by solving the Dirichlet problem for uni-
formly elliptic equations on C?**-domains by assuming that a similar problem for
the Laplace equation can be solved. The method of continuity can be applied to
nonlinear elliptic equations. The crucial ingredient is the a priori estimates.

Let 2 be a bounded domain in R”, and let a;;, b;, and ¢ be defined in €2, with
aijj = aj;. We consider the operator L given by

(6.7) Lu:a,-jDiju+biD,~u+cu in Q

for any u € C2(R2). The operator L is always assumed to be uniformly elliptic
in €2; namely,

(6.8) a;j&& > ME[* forany x € Q and £ € R”

for some positive constant A.

Now we state a general existence result for solutions of the Dirichlet prob-
lem with C2* boundary values for general uniformly elliptic equations with C%
coefficients.

THEOREM 6.11 Let Q be a bounded C?*“-domain in R" and L be a uniformly
elliptic operator in 2 as defined in (6.7), with (6.8) satisfied, ¢ < 0 in 2, and
aij,bi,c € C*(Q) for some a € (0,1). Then for any f € C*(RQ) and ¢ €
C%%(Q), there exists a (unique) solution u € C**(Q) of the Dirichlet problem
Lu=f inQ,
u=¢ onodfQ.

Theorem 6.11 plays an extremely important role in the theory of elliptic dif-

ferential equations of the second order. The crucial step in solving the Dirichlet

problem for L is to assume that the similar Dirichlet problem for the Laplace op-
erator is solved. Specifically, we prove the following result.
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THEOREM 6.12 Let Q be a bounded C?%*-domain in R" and L be a uniformly
elliptic operator in Q2 as defined in (6.7), with (6.8) satisfied, ¢ < 0 in 2, and
aij,bi,c € C*(Q) for some o € (0,1). If the Dirichlet problem for the Poisson
equation
Au=f inQ,
u=¢ onoiL2,
has a C*%*(Q) solution for all f € C*(Q) and ¢ € C>%(Q), then the Dirichlet
problem
Lu=f inQ,
u=¢ onoif2,
also has a (unique) C**(Q) solution for all such f and .
The proof is based on the method of continuity. Briefly summarized, this
method as applied here starts with the solution of the Poisson equation Au = f
and then arrives at a solution of Lu = f through solutions of a continuous family

of equations connecting Au = f and Lu = f. The global C?*-estimates play
essential roles.

PROOF: Without loss of generality, we assume ¢ = 0. Otherwise, we consider
Lv=f—LeinQ,v =0o0ndRQ.
We consider the family of equations

Liu=tLu+ (1 —-t)Au=f
fort € [0, 1]. We note that Lo = A, L; = L. By writing
L= aij,-ju + bl Dju + c'u,

it is easy to see that

af;(x)&& = min(1, 2)[§]
for any x € Q and £ € R” and that

|azt'j|cvt(s_2)’ |b;|ca(s_z)» |ct|Ca(g—2) < max(1, A)

independently of ¢ € [0, 1]. It follows that

|Liulca(gy < Clulc2.a(q)

where C is a positive constant depending only on n, &, A, A, and Q2. Then for each
t€|0,1], Ly : X - C%(R2) is a bounded linear operator, where

X ={ueC>(Q):u=0o0naQ}.

We note that & is a Banach space with respect to | - |C2va(s_2)'
We now let / be the collection of s € [0, 1] such that the Dirichlet problem

Lsu=f inQ,
u=0 ond,
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is solvable in C2*(Q) for any f € C%*(Q). We takeans € [ and letu = L' f
be the (unique) solution. The global C?**-estimates and the maximum principle
imply

1L flera(q) < Clflca(@)-
Forany ¢ € [0, 1] and f € C¥(Q), we write L;u = f as
Liu=f+(Ls—Lu=f + (t—s)(Au— Lu).
Hence u € C>%(Q) is a solution of
Liu=f inQQ,
u=0 ond<,
if and only if
U= Ls_l(f + (t — 5)(Au — Lu)).
For any u € X, set
Tu = L7 (f + (t —s)(Au — Lu)).
Then T : X — X is an operator and for any u,v € X
Tu = Tvlc2aggy = | =)L (A = L) = 0)| 2 g
< Clt —sll(A = L) = vl cagg)
<Cl|t —s|lu-— U|C2>“(S_2)'
Therefore, T : X — X is a contraction if
It —s|<8§=C"1.

Hence for any ¢ € [0, 1] with |t — s| < §, there exists au € X such that u = Tu;
1.€.,

u=L;'(f + (t—s)(Au— Lu)).
In other words, for any ¢ € [0, 1] with |f —s| < § and any f € C%(R), there exists
a solution u € C%*(Q) of

L= f inQ,
u=0 onadQ.

Thus if s € I, thent € [ for any ¢t € [0, 1] with |t — 5| < 6. We now divide
the interval [0, 1] into subintervals of length less than §. By 0 € I, we conclude
lel. O

6.4. Compactness Methods

In this section we discuss several methods to solve nonlinear elliptic differen-
tial equations. All these methods involve the compactness of the Holder functions:
A bounded sequence of Holder functions has a subsequence convergent to a Holder
function.

We first consider a class of semilinear elliptic equations.
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THEOREM 6.13 Let Q be a bounded C***-domain in R" and f be a C'-function

in Q x R. Suppose u,u € C**(Q) satisfy u < i,
Au > f(x,u) inQ, u=<0 ond<,
Au < f(x,u) inQ, u>0 ondQ.

Then there exists a solution u € C**(Q) of
Au= f(x,u) inQ, u=00ndQ, u<u<uinfQ.
We note that ¥ and u are subsolutions and supersolutions, respectively.

PROOF: Set

We take A > 0 large so that
A> fy(x,z) forany (x,z) € Q x [m, M].

Now we write ug = u. Forany ug, k = 0,1,..., we suppose uy4; € C>%(Q)
solve
Augyr — Augyr = f(x,ug) — Aug  in 2,
(6.9)
Ugyr =0 on 0€2.
We first prove

Uu<up<u inQ.
This is obviously true for k = 0.
consider uy 4 ;. First, we note

Alugpr —u) = Ay —u) < (f(xoug) — f(x,u) — Aug —w).
By the mean value theorem, we have
(f(xoug) = fx,u) = Aug —u) = —(A — fz(x,0)) (ug —u)
where 0 is between uy (x) and u(x). Therefore, we obtain
Augsr —u) —A(ug4r —u) =0 in€2,
Ug+1—u >0 ond.

Suppose it holds for some k& > 0. We now

By the maximum principle, we have uy 1 > u in Q. Similarly, we have uy; <u
in Q2. In particular, we have

m<up(x) <M foranyx € Qandk =0,1,....
Similarly, we can prove
U=up Sup=<---<U

In other words, {ug } is an increasing sequence. Therefore, there exists a function u
in Q such that uz (x) — u(x) as k — oo for each x € Q.

Next, the right-hand side expression in (6.9) is uniformly bounded independent
of k. By the global C !**-estimate, we have

”uk”Cl,a(Q) <C
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where C is a positive constant depending only on n, A, m, M, and €2, indepen-
dently of k. In particular, the right-hand side expression in (6.9) is uniformly
bounded in C 1**-norms independent of k. By the global C%**-estimate, we have

llukl C2.2(Q) <C

where C is a positive constant depending only on n, A, m, M, and €2, indepen-
dently of k. Therefore, u € C%(2) and

ur — u inthe C2-norm in .

Hence u is the desired solution. O

As an application, we prove the following result.

COROLLARY 6.14 Let 2 be a bounded C 2:%_domain in R" and f be a bounded
C-function in Q x R. Then there exists a solutionu € C>*(Q) of

Au = f(x,u) in<2,

u=20 on 2.
PROOF: Set
M = sup |f].
QxR
Let u,t € C%%(Q) satisfy
Au=M inQ, u=0 onodQ,
Au=—-M inQ, u=0 ondQ;

then

Au>Au inQ, u=u onadf.
By the maximum principle, we have u < u in 2. It is obvious that
Au> f(x,u), Au < f(x,u) inQ.

Hence u and u satisfy the conditions in Theorem 6.13. We obtain the desired result
by Theorem 6.13. O

REMARK 6.15. Corollary 6.14 still holds if we assume f is C!in Q x R and
satisfies
| f(x,2)| < CA +|z|*) forany (x,z) € Q xR

for some C > O and 7 € [0, 1). Itis important to assume ¢ < 1. Dirichlet problems
may not be solvable if T = 1.
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6.5. Single- and Double-Layer Potentials Methods
We begin with the Dirichlet problem for a half-space:

Au=0 in R'_fl ={x eR"":x,41 > 0},

6.10
(6.10) u=f on BRT'I = R” x {0}.

Using the Poisson integral formula, we can represent a solution as

(6.11) u(x,y) = Py * f(x), (x,y) R =R" xRy,
where
p(m)
Py(x) = n42r1 4 o € Co(R™TH).

T2 (xP [y 2
The estimates for convolutions imply that

(6.12) Sur(; luC-. ) lLr@wry < | fllLrwny foralll < p < oo.
y>

(Note that for p = 400, (6.12) is also a consequence of the maximum principle;
and for p = 1, u(-. Y)llLrwny = 1PyllLiwn - 1/ ey = 1/ llLr@ny-)

We can also reverse the implication of (6.12) in the following sense (via Fa-
tou’s theorem): if a harmonic function u in Ri“ satisfies (6.12), then u has a

nontangential limit a.e. on 8Ri+l, and the limit function ug = u(-,0) € L?(R")
(if p > 1;if p = 1, then ug is a Radon measure) with u(x, y) = Py * ug(x).

SKETCH OF PROOF: (See [15] for details.) Suppose u is harmonic in Ri“
with
(6.13) sup [lu(-, ) lLr@ny < oo.

y>0

Note u(x,y+p) = Py *uy(x) where up(x) = u(x, p)), y > 0, p > 0. Statement
(6.13) implies that u,, — v in L?(R") for a sequence of p, | 0. It is then easy to
see that Py * up, (x) = P, * v(x) forall y > 0as p, — 0.

On the other hand, Py * up,(x) = u(x,y + pn). Thus Py, x v(x) = u(x,y)
where v € L?(R"), and when p = 1 we naturally replace v by a Radon measure.

O

Now we assume that  is a bounded, connected domain in R”, n > 3, with
a C2-boundary. (Here we assume 1 # 2 to simplify matters and avoid technicali-
ties.) Consider the Dirichlet problem

6.14) Au =0 in 2,
ulpgg = f € C>0Q).

Cn
‘x|n—2

Lety(x) = be the fundamental solution of the Laplace operator in R”; here

1 -1 I
_(n—2)a)n  (n—2)27n/2’

Cn:
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Set R(x,y) = —y(x — y), and for f € C(9S2), we define the double-layer poten-
tial

0
615 o= [ GLRP.0) @O, P2,
Q2

and the single-layer potential

(6.16) Sqwn=/MR@ﬂ@wW%@,P¢m.
Q2

Here n ¢ is the outward unit normal for 0€2 at Q.
It is easy to check that

ADf(P)=0 for P € R"|0Q.
We need to understand the boundary behavior of D f(P) on 0€2.

LEMMA 6.16 If f € C(0R2), then
G Df € C(@and
(i) Df € C(R2°).
In other words, D f can be extended continuously from inside €2 to Q, and
from outside 2 to Q2¢. Let D4 f and D—_ f be the restrictions of these two functions

to 0€2. Set ] L p
K(r.0) = 7o r(r.0) = 20
Thus
KeCOQxIQ\{(P,P): Pei))

and |[K(P, Q)| < C/|P — Q|" 2 for P,Q € 9Q and some C < oco. The latter
estimate follows from the C? property of 3Q2. We shall define, for f € C(3R),
the operator

6.17) 7ﬂﬂ=/ﬂﬂ@ﬂ@wwﬂm P € 9.
19

We have the following:

LEMMA 6.17 (Jump Relations for D)
() Dy =11 + T and
(i) D- =11 +T.
Moreover, T : C(02) — C(0R2) is compact.

PROOF OF LEMMAS 6.16 AND 6.17: We first verify that T defined by (6.17)
is a compact operator from C(dQ2) — C(92). Let

Kn(P,Q) =signK(P, Q) -min{N, |K(P,Q)|}, N e€Z.

Thus K is continuous on 92 x 92, and the Arzela-Ascoli theorem implies that
Tnf = [y Kn(P, 0)f(0)dH" 1(Q) is compact on C(dS2). Furthermore,
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since || Ty || < suppesq I1KN (P, Q)lL1q) < C < oo where C is independent
of N, it is rather easy to see that

1Ty — Ty 41l < C 1) ! ﬁ<CN—1—+2
NN =N (N +1) = ‘

We therefore conclude that 7 = limy oo T is a compact operator on C(9€2).
Next we apply the divergence theorem on Q | Bg(P) for small positive §’s
with § — 07 to obtain

(6.18) [ 9 R(P,Q)dH" Y (Q)=1 ifPeQ,
ong
19
(6.19) /K(P, Q)dH" 1 (Q) = % if P €9Q.
0

Let Py € 02 and P € 2 such that P — Py. We want to verify that
(6.20) Df(P)= 5f(Po) + Tf(Po).

Here we observe that R P, dHr1 <C <ooforall P € 09.
Q2 ongo

Thus, in particular, [|D f'|[Loernja) < C || f L= @2)-
If Py ¢ support of f, then it is obvious that

0 —Py
[ s ROP.0)7@)aH " 0) L2
1]
[ K(Po. Q) £(Q)dH"™(Q) = Tf(Py).
0Q

If Py € support of f and f(Pp) = 0, then we let { fr.} C C(d2) such that

1/~ ficl Lo .
and Py ¢ support of f foreachk, k = 1,2,.... Then
IDf(P)=Tf(P)| = |D(f = fid (P +IT(f = fiol(P)
+ D fi (P) = Tfi(P)|
<CIf ~ felzmany + 1T ~ fill=@a)
+ D fie(P) = Tfi(P)|.

We initially choose k large so that the first two terms on the right-hand side of the
above inequality will be small. We then observe that for fixed k (large) as P — Py,
the last term in the inequality also goes to 0.

To complete the proof it suffices to verify the case when f = 1, for which the
result is trivial. If we replace 2 by Q2°, then all the other statements in Lemmas 6.16
and 6.17 follow. ]

To conclude our consideration of double-layer potentials we need to show how
to use them to solve the Dirichlet problem (6.10).
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We begin with a g € C(0R2) and let u(x) = Dg(x) for x € Q. It is clear
from our previous discussion that Au = 01in Q and u € C(Q); moreover, u|yq =
(%I—I—T)g. Therefore, we need to solve for g agiven f € C(0R2), f = (%I%—T)g.
Since T is compact, (%I + T) is obviously a 1 : 1 map on C(3dS2); hence it is also
an onto map from C(d2) to C(d2). This last statement follows from the Leray-
Schauder fixed-point theorem, which we will examine in the next section.

Finally, we shall state without proof the results corresponding to those for
single-layer potentials (6.16). All of the proofs are similar to those for Lem-
mas 6.16 and 6.17 above.

Once again we assume 9<2 to be class C? and f € C(0RQ).

LEMMA 6.18 If f € C(0R2), then
(i) D1 S(f) = grad S(f) € C(s,) and
(i) D_S(f) = grad S(f) € C(Q).
Here 9—50 = {x € Q : dist(x, Q) < 8o} for some small §y > 0.
Let K*(P, Q) = K(Q, P) and define

T* f(P) = / K*(P.0) f(Q)dH"™(Q). P € Q.
19

LEMMA 6.19 (Jump Relations for DS( f))
(i) D+S(f)=—31 + T*and
(i) D_S(f) =31 +T*

Single-layer potentials can be used to solve the Neumann problem

Au=0 1inQ,
g_Z:f on 0€2.

Layer potentials can be used to solve more general elliptic equations (and sys-
tems) with constant coefficients on smooth domains. This method can be further
generalized to C1>*-domains for general elliptic equations of second order with
C%-coefficients (or general first-order elliptic systems with suitably smooth coef-
ficients). The latter is often referred to as ADN theory due to Agmon, Douglis, and
Nirenberg.*

6.6. Fixed-Point Theorems and Existence Results

The Brouwer fixed-point theorem asserts that a continuous mapping of a closed
ball in R” into itself has at least one fixed point. In this section we shall discuss
a version of the fixed-point theorem in an infinite-dimensional Banach space due
to Schauder and a special case of the Leray-Schauder theorem. As an application
we shall discuss the existence of a class of quasi-linear elliptic equations for the

*Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions. I, Il. Comm. Pure Appl. Math.
12 (1959) 623-727; 17 (1964), 35-92.
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Dirichlet problem. We shall end the section with a brief mention of the minimal
surface equation.

THEOREM 6.20 (Schauder’s Fixed-Point Theorem) Let G be a compact, convex
set in a Banach space X, and let T be a continuous mapping of G into itself. Then
T has a fixed point; that is, for some x € G, Tx = x.

PROOF: Let k € N. Since G is compact, there is a finite set {x1,x2,...,X,}
where n = n(k) such that the balls B; = B;/x(x;), i = 1,2,...,n, cover G. Let
G be the convex hull of {x1, x2,...,x,} and let J; : G — G be defined by
> dist(x,G — Bi)x;

Y dist(x,G — B;)
It is easy to see that Jy is continuous on G; furthermore,
> i dist(x, G — Bj)|lx — x| - 1

Y- dist(x,G — B;) k'

The mapping Ji o T : G — Gi. Thus by the Brouwer fixed-point theorem,

there exist y; € G such that Jp o T(yx) = yx,k = 1,2,.... Since G is compact,
one may assume, without loss of generality, that y; — x € G. Since

(6.21) T (x) =

[/ (x) — x|l <

1
[ve =Tl = 1Tk o Tx) = Tyl < o
and since 7 is continuous, we have

lim yp =x=Tx forsomex €g.
k—o00

O

COROLLARY 6.21 Let G be a closed, convex set in a Banach space X . Suppose T
is a map from G into G such that TG is precompact. Then T has a fixed point in G.

Note that a continuous mapping between two Banach spaces is called compact
(or completely continuous) if the images of bounded sets are precompact; that is,
their closures are compact.

THEOREM 6.22 (Leray-Schauder Theorem) Let T be a compact mapping of a
Banach space X into itself, and suppose there is a constant M such that

(6.22) x| < M
forall x € X and o € [0, 1] satifying x = cTx. Then T has a fixed point.
PROOF: Define a new mapping 7* by
T*x = Tx if [Tx|| < M,

T*x = My i |Tx]| = M.

(6.23)

T* is clearly a continous mapping of the closed ball By into By C X itself. Since
T (Bp,) is precompact, the same is true for 7*(Bjs). Hence by Corollary 6.21, the
mapping 7* has a fixed point x. We claim x is also a fixed point of 7". Indeed, if
ITx| > M, thenx = T*x = ”;‘fl—x”Tx = 0T x where 0 = ”%4—)6” € (0,1]. By
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hypothesis, we would have ||x|| < M. On the other hand, || x| = ||T*x|| = M
a contradiction. Thus ||Tx|| < M must be true and consequently 7*x = x =
Tx. ]

REMARK. Suppose T is a compact mapping of a Banach space X into itself.
Then for some o € (0, 1], the map o 7 possesses a fixed point. Indeed, since 7' (By)
is compact in X, there is an A > 1suchthat |[Tx| < A forall x € By. Thus the
mapping o1 with o = Z maps B into itself and our conclusion follows. Also,
note that if (6.22) is valid, then for any o € [0, 1], the mapping o7 has a fixed
point as well.

Next we shall describe a situation in which Theorem 6.22 can be applied. For
B € (0,1), we consider the Banach space X = CLB(Q) where Q is a C22,
bounded domain in R”. Let L be an operator given by

(6.24) Lu = a"’ (x,u, Vuuy,x;, + b(x,u, Vu).

We assume that L is elliptic in Q; i.e., (' (x,, p)) is positive definite for all
(x,¢,p) € Q@ xR x R*. We also assume, for some o € (0, 1), that a”/,b €
C*(Q xR xR"). Let¢ € C2%(3Q). Forallv € CLA(Q) = X, weletu = Tv
be the unique solution in C 2.2 () of the linear Dirichlet problem

aij(x,v,Dv)uxix_/. 4+ b(x,v,Dv) =0 in <,

(6.25)
Ulgg = ¢ on 0€2.

We note that the solvability of Lu = 0 in @ with v = ¢ on 92 in the space
C?%(Q) is equivalent to the solvability of Tu = u in X.
Let

(6.26) Lou = a" (x,u, Du)uy,x; +ob(x,u, Vu).

Then v = 0Tu in X is the same as Loy = 0in Q and u = 0¢ on 9Q2. As a
consequence of the Leray-Schauder theorem, we have the following:

THEOREM 6.23 Let 2, ¢, and L be as above. If, for some B > 0, there is a con-
stant M independent of u and o such that every C%*(Q)-solution of the Dirichlet
problem

Lou=0 inQ
(6.27) ot e
u=0¢ ond<2,
satisfies
(6.28) ||u||c1,B(§) <M,

then it follows that the Dirichlet problem Lu = 0 in Q withu = ¢ on 9Q is
solvable in C*%(Q).

PROOF: From the preceding discussion, it suffices to verify that 7" is continu-
ous and compact. Again, this is simply a consequence of the Schauder estimates.
We note that C2:*8 (Q) is precompact in C 1A (). O
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We shall briefly mention how assumptions in Theorem 6.23 can be verified for
the minimal surface equation. For simplicity, we consider the case where €2 is a
uniformly convex, C2*®-bounded domain in R” and the following Dirichlet prob-
lem:
div (—’71+|Vu|2) =0 in€2,
Ulgg = ¢ on 0%2.

We assume that ¢ € C2%(9Q).
Suppose u is a C%%-solution of (6.28); then the maximum principle implies
that

(6.29)

(630) lull ooy < 19ll0022) = Co < oo.

Next, by the uniform convexity of dQ and the C?*-regularity of ¢, we can
check that, for every xo € 9€2, there exist linear functions Effo (x) such that

UE (x0) = ¢(xo) and L5 (x) < ¢(x) < & (x)

for all x € 2. Since linear functions are solutions of div(Vu/+/1 + |Vu|?) = 0
in €2, from the maximum principle we conclude that

(6.31) o) Su(x) < ﬁ;ro(x), X eQ;
in particular, |Vu(xo)| < max |V£E (xo)| = C1 < oo.
On the other hand, if u is a C%%-solution of (6.28), then u, = %u, o =
1,2,...,n, satisfies
0
(6.32) ——(Fp,p,(Du)ug;) = 0.

Bxl-

Here F(Du) = /1 + |Vu|?, hence (Fp,p;(Du)) > 0. Thus uy satisfies the
maximum principle. Therefore we have

(6.33) [VulLe(@) < [VullLe@e) < C1 < oo.
From (6.29), (6.32), and (6.33), we further deduce that
(6.34) IVulles gy = C(Co, C1,C2) < 0

where C2 = ||@|| 2.2 (9g)- This follows from De Giorgi-Moser theory.

We rewrite div(Vu/+/1 + [Vu|?) = 0 as

UiUj

6.35 Au————u;j; =0

(6.35) T + |Vu|? Hij
and combine (6.35) with (6.34) and the Schauder estimates to obtain
(636) ||u||c2,3(§) S C(CO’ Cly C29 Q)

where we may assume that 0 < 8 < «.
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